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Introduction

This work presents a natural extension of the (associative) Lambek Calculus (LC)

[Lambek 1958]. The type-logical approach to language is basically categorial gram-

mar formulated on the foundations of type theory and substructural logics. So,

the LC is a logic with its proof-theory and (prosodic) interpretation, which enjoys

several interesting (and beautiful) mathematical properties such as cut-elimination

and interpolation. A fundamental feature of the LC is the so-called Curry-Howard

homomorphism, which gives to every proof-derivation a lambda-term encoding its se-

mantics. This is what linguists call the syntax-semantics interface. However, the LC,

despite covering several interesting linguistic phenomena, such as non-constituent

coordination, encounters some difficulties with phenomena involving discontinuity.

As a matter fact, the LC is claimed to be the logic of (only) concatenation.

Our main contribution is the focus on what we call the 1-Discontinuous Lambek

Calculus (1-DLC, which is a fragment of calculi considered in [Morrill and Meren-

ciano96] and [Morrill2002]), an extension of the LC (three new binary connectives

and two units1) which is able to deal with several discontinuous linguistic phenom-

ena, such as particle verbs, medial extraction, cross-serial dependencies, gapping and

quantifier raising. Pentus [Pentus 1993] proved that the LC is weakly equivalent to

context-free grammars (the so-called Chomsky conjecture). We give some results

that show that (a fragment) of 1-DLC is weakly equivalent to Head Grammars [Pol-

lard 84]. Head Grammars are a proper extension of context-free grammars. They

are a proper subclass of mildly context-sensitive grammars, which are believed by

several linguists to be the right formal system to describe natural language phenom-

1 Two unary connectives, bridge and split are considered as well.



2 Introduction

ena, including of course, discontinuity. Moreover, the LC is complete w.r.t the class

of free monoids (proof by [Pentus 1995]). Here again, we give a partial complete-

ness result (completeness for the continuous and discontinuous implicative fragment)

w.r.t. the class of free 1-graded monoids, which are an extension of monoids. We

prove also the full completeness of the 1-DLC w.r.t the class of preordered 1-graded

monoids.

Moreover, the 1-DLC is presented model-theoretically with a categorical calcu-

lus of sorted types. Then, a new kind of sequent calculus, the hypersequent calculus

(see [Morrill98]) is given to translate the categorical calculus to a logic with elimi-

nation rules and introduction rules and without structural rules (except an implicit

associativity). The hypersequent calculus intuitively shows that types can be inhab-

ited by pairs of strings (as in Head Grammars). The fundamental cut elimination

theorem for the hypersequent calculus is proved.

The 1-DLC and the hypersequent calculus were invented by Glyn Morrill [Morrill

1998]. The type-logical study of discontinuity was initiated by Moortgat [Moortgat

1988]. Morrill aspires to give the best type-logical account of discontinuity, by means

of a separator or point of discontinuity which is in some sense close to a proposal by

Versmissen [Ver91] and Solias [Solias 1992]. Morrill crucially interprets types with

sorted operations (linear functions of strings: concatenation and wrapping). This is

an important feature of our model-theoretical results.

The first chapter introduces the 1-discontinuous categorical Lambek calculus

of sorted types, and its translation to the hypersequent calculus or 1-DLC with

or without units. The second chapter is devoted to the proof-theory of the new

calculus, whereas the next chapter considers prosodic interpretation. Finally, the

last chapter presents linguistic applications to discontinuity and studies the weak

generative capacity of the 1-DLC.



Chapter 1

From sequent calculus to

hypersequent calculus

In this chapter, the fundamental sorted operations with strings and tuples of strings

are considered. We present sorted types and the 1-discontinuous categorical Lambek

calculus. The natural way to interpret sorted types is in 1-graded monoids which

are studied in depth. Finally, we formulate a syntactic translation from the 1-

discontinuous categorical Lambek calculus to the hypersequent calculus or 1-DLCε.
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CALCULUS

1.1 Types, sequents, hypersequents

1.1.1 Strings and tuples of strings

Let V0 be a set, closed by an internal binary operation ·, with a distinguished element

I, called the unit. The structure 〈V0, ·, I〉 is called a monoid if the following axioms

hold:

• x · (y · z) = (x · y) · z

• x · I = I · x = x

Let $ be an element not belonging to V0. Let 〈V0, $〉 be the monoid freely generated

by V0 and $. We define V1 ⊆ 〈V0, $〉 as:

V1 = {a · $ · b : a, b ∈ V0}

Remark 1. $ is called the separator.

As $ /∈ V0, it is easy to see that V1 is in a natural bijection with the set of pairs of

strings of V0, V0 × V0:

V0 × V0
'−→ V1

−→x = (x1, x2) 7→ x1 · $ · x2

Definition 1. An element of V0 is said to be of sort 0. An element of V1 is said to

be of sort 1.

Let Ṽ
def
= V0∪V1

1. We define in Ṽ two sort polymorphic binary operations conc

and wrap:

1Ṽ ( 〈V0, $〉, for 〈V0, $〉 contains strings with an unbounded number of occurrences of $.
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conc(0,0)→0 : V0 × V0
(0,0)→0−→ V0

(s, t) 7→ s · t

conc(1,0)→1 : V1 × V0
(1,0)→1−→ V1

(s1 · $ · s2, t) 7→ s1 · $ · s2 · t

conc(0,1)→1 : V0 × V1
(0,1)→1−→ V1

(t, s1 · $ · s2) 7→ t · s1 · $ · s2

wrap(1,0)→0 : V1 × V0
(1,0)→0−→ V0

(s1 · $ · s2, t) 7→ s1 · t · s2

wrap(1,1)→1 : V1 × V1
(1,1)→1−→ V1

(s1 · $ · s2, t1 · $ · t2) 7→ s1 · t1 · $ · t2 · s2

wrap(1,0)→0 and wrap(1,1)→1 have disjoint domains, therefore it is correct to define

the sort polymorphic function wrap:

wrap
def
= wrap(1,0)→0 ]wrap(1,1)→1

conc(0,0)→0, conc(1,0)→1 and conc(0,1)→1 have also disjoint domains, so again it is

correct to define the sort polymorphic function conc:

conc
def
= conc(0,0)→0 ] conc(1,0)→1 ] conc(0,1)→1

For the sake of simplicity and readability, wrap and conc will be denoted as infix

operators ·̂ and · respectively. Another useful convention is to denote elements of

sort 1 as vectors of strings, e.g., ~s = s1 · $ · s2.

Definition 2. I and J denote the unit elements for conc and wrap. I is of sort

0, and J of sort 1.

• (Unit1) s · I = I · s = s

• (Unit2) ~s · I = I · ~s = ~s

• (Unit3) ~s ·̂ J = J ·̂ ~s = ~s

Now, we give some properties which hold of Ṽ :
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Lemma 1.

• (Assconc1) s · (t · r) = (s · t) · r

• (Assconc2) ~s · (t · r) = (~s · t) · r

• (Assconc3) s · (~t · r) = (s · ~t) · r

• (Assconc3) s · (t · ~r) = (s · t) · ~r

• (Asswrap1) ~s ·̂ (~t ·̂ r) = (~s ·̂ ~t) ·̂ r

• (Asswrap2) ~s ·̂ (~t ·̂ ~r) = (~s ·̂ ~t) ·̂ ~r

• (MixedAss1) s · (~t ·̂ r) = (s · ~t) ·̂ r

• (MixedAss2) s · (~t ·̂ ~r) = (s · ~t) ·̂ ~r

• (SplitWrap0) a · b · c = (a · J · c) ·̂ b

• (SplitWrap1) a ·~b · c = (a · J · c) ·̂ ~b

Proof. Trivial.

We are now in a position to formulate a natural algebraic extension to monoids,

which are the natural model-theoretical foundation of continuity. This structure

gives us the model-theoretical foundation of discontinuity. Let’s formulate an ab-

stract structure which captures the properties enunciated in the last lemma.

Definition 3 (1-graded monoid). A sorted algebra 〈U0 ∪ U1, ·, ·̂ , I,J〉 is called a

1-graded monoid when the properties of the last lemma and the unit properties

Uniti hold.

Remark 2. The class of 1-graded monoids is not empty, for 〈Ṽ , ·, ·̂ , I, J〉 is an

example of a 1-graded monoid.
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1.2 Towards sorted types

We want now to define some natural algebraic operations on the power set P(Ṽ ),

of a 1-graded monoid. Let A, . . . , Z denote arbitrary subsets of Ṽ .

Definition 4 (principle of well-sorting). Given A ⊆ Ṽ , we say that A is sorted

if:

A ⊆ V0 or A ⊆ V1

This means that sorted subsets of 1-graded monoids are inhabited by elements of

the same sort.

We define six sorted operations ◦, ◦̂ , \\, //,⇑,⇓ on sorted subsets of Ṽ . As

expected, these operations are sort polymorphic, and by the principle of well-

sorting their sort is inferred by the sort of their arguments. The counterpart of the

units I, J in P(Ṽ ) are also defined:

- Continuous connectives:

A ◦B = {d : ∃a ∈ A ∃b ∈ B such that d = a · b}

• B ◦ A is of sort 0, if A and B are of sort 0.

• B ◦ A is of sort 1, if A is of sort 0 and B of sort 1.

• B ◦ A is of sort 1, if A is of sort 1 and B of sort 0.

B//A = {d|∀a ∈ A d · a ∈ B}

• B//A is of sort 0, if A and B are of sort 0.

• B//A is of sort 1, if A is of sort 0 and B of sort 1.

• B//A is of sort 0, if A and B are of sort 1.
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A\\B = {d|∀a ∈ A a · d ∈ B}

• A\\B is of sort 0, if A and B are of sort 0.

• A\\B is of sort 1, if A is of sort 0 and B of sort 1.

• A\\B is of sort 0, if A and B are of sort 1.

- Discontinuous connectives:

A ◦̂ B = {d : ∃α ∈ V1 ∩ A,∃b ∈ B such that d = α ·̂ b}

• A ◦̂ B is of sort 0, if A is of sort 1 and B of sort 0.

• A ◦̂ B is of sort 1, if A is of sort 1 and B of sort 1.

B ⇑ A = {δ|δ ∈ V1, &∀a ∈ A δ ·̂ a ∈ B}

B ⇑ A is always of sort 1.

A ⇓ B = {δ|∀α1 ∈ V1 ∩ A α ·̂ δ ∈ B}

• A ⇓ B is of sort 0, if A is of 1 and B of sort 0.

• A ⇓ B is of sort 1, if A and B are of sort 1.

ˇA = {a · $ · b : a · b ∈ A}, if A of sort 0

ˆA = {a · b : a · $ · b ∈ A}, if A of sort 1

I = {I}

J = {I · $ · I} = {$}

Remark 3. The unary operations ˇ and ˆ are called split and bridge respectively.



1.2. TOWARDS SORTED TYPES 9

1.2.1 Algebraic properties

Let’s explore some fundamental algebraic properties defined on P(Ṽ ). The two

sorted linear operations conc and wrap generate sorted associative residuated

triples, (◦, \\, //) and ( ◦̂ ,⇑,⇓). Let’s see them:

- Continuous residuation:

Resconc

A ◦B ⊆ C iff B ⊆ A\\C

A ◦B ⊆ C iff A ⊆ C//B

Discontinuous residuation:

Reswrap

A ◦̂ B ⊆ C iff B ⊆ A ⇓ C

A ◦̂ B ⊆ C iff A ⊆ C ⇑ B

Associative rules:

Asscon A ◦ (B ◦ C) = (A ◦B) ◦ C

Asswrap A ◦̂ (B ◦̂ C) = (A ◦̂ B) ◦̂ C

MixedAss A ◦ (B ◦̂ C) = (A ◦B) ◦̂ C

Units A ◦ I = I ◦ A = A A ◦̂ J = J ◦̂ A = A

Moreover, following Morrill [1994], a fundamental property called the split-wrap

rule is considered:

SplitWrap A ◦B ◦ C = (A ◦ J ◦ C) ◦̂ B, (A, C of sort 0, and B are of sort 0 or sort 1)

These algebraic properties are to be read carefully: sorts must be appropriate in

order to have well defined operations. So the reader is invited to check the sorts of

the laws displayed above.
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1.2.2 A categorical 1-discontinuous syntactic calculus

Following Lambek [58], we present a categorical calculus of types, which allows

us to deal with discontinuous phenomena of natural language. Types are (logical)

formulas which are intuitively interpreted as before, that is, they are inhabited

by elements of a 1-graded monoid. This categorical calculus is mapped into the

discontinuous hypersequent calculus, a pure substructural logic which is a natural

extension of the so-called (associative) Lambek Calculus. The hypersequent calculus

for discontinuity was invented by Morrill [Morrill 97, 2003], and we call our fragment

1-DLC. Morrill has been working on a number of papers (and now, in a joint work

with Fadda and the author) on the generalized discontinuous Lambek Calculus, or

ω-DLC, a pure substructural logic which admits the existence of multiple points of

discontinuity. As a matter of fact, the reader has probably expected that conc and

wrap can be infinitely sorted in a ω-graded monoid.

Definition 5 (Set of discontinuous Lambek types). Let A0 and A1 be sets of atomic

types of sort 0 and 1 respectively. We define the sorted set F of sorted types as:

F0 ::= I | A0 | F0\F0 | F1\F1| F0/F0| F1/F1 | F0 • F0 | F1 ↓ F0 | F1 �F0

F1 ::= J | A1 | F0 ↑ F0 | F1 ↑ F1 | F1 ↓ F1 | F0\F1 | F1/F0 | F0 • F1 | F1 • F0 | F1 �F1

F ::= F0 | F1

As the reader may notice, this recursive definition of sorted types mimics the six

operations ◦, ◦̂ , \\, //,⇑,⇓ on the power set of 1-graded monoids, as well as the

units I, J, and in the same manner, the sort of a type can be inferred also from

its subtypes. We present now the categorical 1-discontinuous syntactic calculus,

a natural extension of the categorical (continuous) syntactic Lambek calculus in

figure 1.1. Obviously, type constructors \, /, •, ↑, ↓,� are sort polymorphic.

Definition 6. A type inference of the categorical 1-discontinuous syntactic calculus

is called a sequent. A provable sequent S = A ⇒ B, is a (finite) derivation in the

categorical calculus whose last conclusion is S: in that case we write ` A ⇒ B.
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Type inferences in the categorical 1-discontinuous syntactic calculus are sound

modulo sort, i.e., the reader must infer the right sort of types in order to have

meaningful sequents.

A ⇒ A
id0 A ⇒ A

id1

Rescont A •B ⇒ C iff B ⇒ A\C A •B ⇒ iff A ⇒ C/B

Resdiscont A�B ⇒ C iff B ⇒ A ↓ C A�B ⇒ C iff A ⇒ C ↑ B

Asscon A • (B • C) ⇒ E iff (A •B) • C ⇒ E Asswrap A� (B � C) ⇒ E iff (A�B)� C ⇒ E

Unit0 A ⇔ A • I ⇔ I •A Unit1 A ⇔ A� J ⇔ J �A

MixAss A • (B � C) ⇒ E iff (A •B)� C ⇒ E

SplitWrap (A •B • C) ⇒ E iff (A • J • C)�B ⇒ E with A, C of sort 0, and B of sort 0 or 1

Cut A ⇒ B and B ⇒ C then A ⇒ C where A,B and C are all of the same sort

Figure 1.1: Categorical 1-discontinuous syntactic calculus

Let’s give some derivable type inferences in the categorical 1-discontinuous calculus:

• Continuous and discontinuous modus ponens (MP):

(B/A) • A ⇒ B, for by residuation

B/A ⇒ B/A
Id0

(B/A) • A ⇒ B
Rescont

Similar reasoning for \.

(B ↑ A)�A ⇒ B, for by discontinuous residuation

B ↑ A ⇒ B ↑ A
Id0

(B ↑ A)� A ⇒ B
Resdiscont

Similar reasoning for ↓.

• Type lifting:

N • (N\S) ⇒ S
MP

N ⇒ S/(N\S)
Rescont

(S ↑ N)�N ⇒ S
MP

N ⇒ (S ↑ N) ↓ S
Resdiscont
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• Monotony:
A ⇒ C

A�B ⇒ C �B

Other similar results can be checked.

• Composition:

(C ↑ B)� (B ↑ A) ⇒ C ↑ A

Other similar results can be checked.

In categorial grammar (in its type-logical version or in CCG), quantifiers like every-

one usually have two type assignments, the subject oriented type S/(N\S) and the

object oriented type (S/N)\S. In our syntactic 1-discontinuous calculus we can

assign a unique type (S ↑ N) ↓ S which works for both cases, for the following

sequents hold:

(S ↑ N) ↓ S ⇒ S/(N\S)

(S ↑ N) ↓ S ⇒ (S/N)\S

Let’s see the first type inference. By the split-wrap rule and residuation J•(N\S) ⇒

S ↑ N . By monotony, (J • (N\S)) � ((S ↑ N) ↓ S) ⇒ (S ↑ N) � ((S ↑ N) ↓

S). By modus ponens, (S ↑ N) � ((S ↑ N) ↓ S) ⇒ S. By Cut, we have then

(J • (N\S))� ((S ↑ N) ↓ S) ⇒ S. By the split-wrap rule, ((S ↑ N) ↓ S) • (N\S) ⇒

(J • (N\S)) � ((S ↑ N) ↓ S). By Cut again, (S ↑ N) ↓ S • (N\S) ⇒ S. Finally,

by residuation, (S ↑ N) ↓ S ⇒ S/(N\S). The other type inference is completely

symmetrical. Later, via the translation τ to 1-DLC, we give an extremely easy

proof of the type computations we have seen.

Before going on to the following section, we formulate some important questions:

• Is the categorical 1-discontinuous syntactic calculus decidable? Given a se-

quent A ⇒ B, is there an effective procedure to check its theoremhood?

• Which kind of prosodic interpretations can we give that make the calculus

sound and complete?

The answers to these questions are addressed in the next section.
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1.3 From sequents to hypersequents

We define a natural translation of the categorical 1-discontinuous syntactic calculus

to a new calculus called hypersequent calculus. In fact, a variety of hypersequent

calculi are presented. The idea is quite simple. If a type A is of sort 0, then translate

it to A. If A is of sort 1, then translate it to 0
√

A, [ ], 1
√

A. The intuition is that an

inhabitant of a sort 1 type A has two components as a 2-dimensional vector2. Let’s

give the intuition of the translation through some examples:

• If B and A are of sort 0, then (B ↑ A)�A ⇒ B translates to 0
√

B ↑ A,A, 1
√

B ↑ A ⇒ B.

• If B and A are of sort 0, then J•(A\B) ⇒ B ↑ A translates to [ ], A\B ⇒ 0
√

B ↑ A, [ ], 1
√

B ↑ A.

• If A and B are of sort 1, then A�(A ↓ B) ⇒ B translates to 0
√

A, 0
√

A ↓ B, [ ], 1
√

A ↓ B, 1
√

A ⇒
0
√

B, [ ], 1
√

B.

Let’s define the translation τ from sequents to hypersequents formally:

2Why 0
√

, 1
√? Intuition:

√
A
√

A = A gives the idea that A (of sort 1) has two components which

being concatenated (multiplied!) give A (A = 0
√

A • J • 1
√

A).
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τ(A ⇒ B) := τ−(A) ⇒ τ+(B)

τ−(I) = Λ

τ−(A) = A, if A is of sort 0, and the main type constructor

of A is different from • and � .

τ−(A) = π0(A), [ ], π1(A) if A is of sort 1, and the main type constructor

of A is different from • and � .

τ−(A) = π0(A), [ ], π1(A) if A is of sort 1

τ−(A •B) = τ−(A), τ−(B)

τ−(A�B) = π0(A), τ−(B), π1(A)

π0(J) = Λ

π1(J) = Λ

τ+(A) = A if A is of sort 0

τ+(A) = 0
√

A, [ ], 1
√

A if A is of sort 1

π0(A •B1) = A, π0(B1) if A is of sort 0 and B1 of sort 1

π1(A •B1) = π1(B1) if A is of sort 0 and B1 of sort 1

π0(A1 •B) = π0(A1) if A1 is of sort 1 and B of sort 0

π1(A1 •B) = π1(A1), B if A1 is of sort 1 and B of sort 0

π0(A�B) = π0(A), π0(B) if both A and B are of sort 1

π1(A�B) = π1(B), π1(A) if both A and B are of sort 1

π0(A) = 0
√

A if A is of sort 1, different from J and its main type constructor is

different from • and �

π1(A) = 1
√

A if A is of sort 1, different from J and its main type constructor is

different from • and �

Example 1. Let’s see the translation of ((B ↑ A) • C)� A ⇒ B • C:

τ(((B ↑ A) • C)� A ⇒ B • C) = τ−(((B ↑ A) • C)� A) ⇒ τ+(B • C)

τ−(((B ↑ A) • C)� A) = π0((B ↑ A) • C), A, π1((B ↑ A) • C) =

π0(B ↑ A), A, π1(B ↑ A), C = 0
√

B ↑ A, A, 1
√

B ↑ A, C

τ+(B • C) = B • C

We get then:

τ(((B ↑ A) • C)� A ⇒ B • C) = 0
√

B ↑ A, A, 1
√

B ↑ A, C ⇒ B • C

In the categorical calculus, it’s easy to see that ((B ↑ A) • C) � A ⇔ ((B ↑

A)� A) • C. Observe that:
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τ−(((B ↑ A) • C)� A) = τ−(((B ↑ A)� A) • C) =

0
√

B ↑ A, A, 1
√

B ↑ A, C

For:

τ−(((B ↑ A)� A) • C) =

τ−((B ↑ A)� A), τ−(C) = π0(B ↑ A), τ−(A), π1(B ↑ A), τ−(C) =

π0(B ↑ A), A, π1(B ↑ A), C =

0
√

B ↑ A, A, 1
√

B ↑ A, C

We realize then that the translation τ collapses structural postulates into the

same textual form. Structural rules (except an implicit associativity) disappear in

the hypersequent calculus, which we can qualify as a pure calculus without structural

rules.

Let’s define the set of correct configurations of hypersequents (by an unambigu-

ous grammar)3:

O0 ::= Λ | A0,O0, | 0
√

A1,O0,
1
√

A1,O0

O1 ::= [ ],O0 | A0,O1 | 0
√

A1,O1,
1
√

A1 O0 | 0
√

A1,O0,
1
√

A1 O1

O = O0 | O1

Remark 4. [ ] is called the separator, or point of discontinuity.

We give a pure logical hypersequent calculus, with no structural rules4. An impor-

tant convention is the vectorial notation( [MFV07]), which consists of writing
−→
A for

a given type. This notation allows to read A as a sort 0 type or as a sort 1 type with

its components. The sort of
−→
A is inferred from context. Vectorial notation allows a

more compact representation of hypersequents. Figure 1.2 shows the sorted contin-

uous connectives. Figure 1.3 shows the sorted discontinuous product and figure 1.4,

the sorted discontinuous implicative connectives. Figure 1.6 shows the rules for the

unary operators bridge and split ,̂ ˇ defined in section 1.2 (1-DLCˆ̌ ).

3A0 and A1 denote arbitrary types of sort respectively 0 and 1.
4Except an implicit associativity.
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Finally, figure 1.7 shows the Cut rules for the hypersequent calculus. Intuitively,

the Cut rule says that ⇒ is transitive.

Lemma 2. Let A, B be arbitrary types. Then,

` A ⇒ B iff `1−DLCε+Cut τ(A ⇒ B)

Proof. We follow again Lambek [58]. In both sides (’if ’ and ’only if ’) assume the

lemma holds of the premises of the rule. The residuated rules mimic the cases treated

by Lambek. Let’s the see how the different structural rules of the categorical calculus

are mapped through τ, 0
√

and 1
√

. In the following, A, C denote sort 0 types, and B

a type of sort 0, or 1.

- Split-wrap rule,

τ((A • J • C)�B) = τ((A • (J • C))�B) =

0
√

A • (J • C), τ(B), 1
√

A • (J • C) =

A, 0
√

J • C, τ(B), 1
√

J • C =

A, 0
√

J, τ(B), 1
√

J,C =

A, τ(B), C =

τ(A •B • C)

Other structural rules behave similarly, that is, they are translated to the same

textual form. Finally, the Cut rule5 is generalized to the cases of the hypersequent

calculus using the rules of monotony.

- Checking theoremhood of sequents: So, if we are given a sequent of the

categorical 1-discontinuous syntactic calculus, in order to check its theoremhood,

we translate it via τ to 1-DLCε with Cut, and then we try to prove it in the

hypersequent calculus. We will see in the next chapter the positive answer to the

problem of the decidability of the categorical 1-discontinuous syntactic calculus.

The 1-DLCε with Cut is decidable.

Remark 5. Figure 1.5 presents a surprising fact. According to the intuitive prosodic

interpretation, the discontinuous unit J could be definable in terms of the continuous

5Actually, there are two instances of Cut in the hypersequent calculus (for sort 0 or 1).



1.3. FROM SEQUENTS TO HYPERSEQUENTS 17

−→
A ⇒

−→
A

id

∆1, A, B, ∆2 ⇒
−→
D

∆1, A •B,∆2 ⇒
−→
D

•L Γ ⇒ A ∆ ⇒ B
∆,Γ ⇒ A •B

•R

∆1,
0
√

A,Θ, 1
√

A,B,∆2 ⇒
−→
D

∆1,
0
√

A •B,Θ, 1
√

A •B,∆2 ⇒
−→
D

•L
Γ ⇒ 0

√
A, [ ], 1

√
A ∆ ⇒ B

∆,Γ ⇒ 0
√

A •B, [ ], 1
√

A •B
•R

∆1, A, 0
√

B,Θ, 1
√

B,∆2 ⇒
−→
D

∆1,
0
√

A •B,Θ, 1
√

A •B,∆2 ⇒
−→
D

•L
Γ ⇒ A ∆ ⇒ 0

√
B, [ ], 1

√
B

∆,Γ ⇒ 0
√

A •B, [ ], 1
√

A •B
•R

Γ ⇒ A ∆1, C,∆2 ⇒
−→
D

∆1,Γ, A\C,∆2 ⇒
−→
D

\L A,Γ ⇒ C

Γ ⇒ A\C
\R

Γ1, [ ],Γ2 ⇒ 0
√

A, [ ], 1
√

A ∆1,
0
√

C, Θ, 1
√

C, ∆2 ⇒
−→
D

∆1,Γ1,Θ,Γ2, A\C,∆2 ⇒
−→
D

\L
0
√

A, [ ], 1
√

A,Γ ⇒ 0
√

C, [ ], 1
√

C

Γ ⇒ A\C
\R

Γ ⇒ A ∆1,
0
√

C, Θ, 1
√

C, ∆2 ⇒
−→
D

∆1,Γ, 0
√

A\C, Θ, 1
√

A\C, ∆2 ⇒
−→
D

\L A,Γ ⇒ 0
√

C, [ ], 1
√

C

Γ ⇒ 0
√

A\C, [ ], 0
√

A\C
\R

Γ ⇒ A ∆1, C,∆2 ⇒
−→
D

∆1, C/A, Γ,∆2 ⇒
−→
D

/L Γ, A ⇒ C

Γ ⇒ C/A
/R

Γ1, [ ],Γ2 ⇒ 0
√

A, [ ], 1
√

A ∆1,
0
√

C, Θ, 1
√

C, ∆2 ⇒
−→
D

∆1, C/A, Γ1,Θ,Γ2,∆2 ⇒
−→
D

/L Γ, 0
√

A, [ ], 1
√

A ⇒ 0
√

C, [ ], 1
√

C

Γ ⇒ C/A
/R

Γ ⇒ A ∆1,
0
√

C, Θ, 1
√

C, ∆2 ⇒
−→
D

∆1,
0
√

C/A,Θ, 1
√

C/A,Γ,∆2 ⇒
−→
D

/L
Γ, A ⇒ 0

√
C, [ ], 1

√
C

Γ ⇒ 0
√

C/A, [ ], 0
√

C/A
/R

Figure 1.2: Axioms and rules for continuous connectives of the hypersequent calculus

1-DLC
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∆1,
0
√

A,B, 1
√

A,∆2 ⇒
−→
D

∆1, A�B,∆2 ⇒
−→
D

�L Γ1, [ ],Γ2 ⇒ 0
√

A, [ ], 1
√

A ∆ ⇒ B

Γ1,∆,Γ2 ⇒ A�B
�R

∆1,
0
√

A, 0
√

B,∆2,
1
√

B, 1
√

A,∆3 ⇒
−→
D

∆1,
0
√

A�B,∆2,
1
√

A�B,∆3 ⇒
−→
D

�L
Γ1, [ ],Γ2 ⇒ 0

√
A, [ ], 1

√
A ∆1, [ ],∆2 ⇒ 0

√
B, [ ], 1

√
B

Γ1,∆1, [ ],∆2,Γ2 ⇒ 0
√

A�B, [ ], 1
√

A�B
�R

Figure 1.3: Rules for the discontinuous product of the hypersequent calculus 1-DLC

Γ1, [ ],Γ2 ⇒ 0
√

A, [ ], 1
√

A ∆1, C,∆2 ⇒
−→
D

∆1,Γ1, A ↓ C,Γ2,∆2 ⇒
−→
D

↓ L
0
√

A,Γ, 1
√

A ⇒ C

Γ ⇒ A ↓ C
↓ R

Γ1, [ ],Γ2 ⇒ 0
√

A, [ ], 1
√

A ∆1,
0
√

C, ∆2,
1
√

C, ∆3 ⇒
−→
D

∆1,Γ1,
0
√

A ↓ B,∆2,
1
√

A ↓ B,Γ2 ⇒
−→
D

↓ L
0
√

A,Γ, 1
√

A ⇒ 0
√

B, [ ], 1
√

B

Γ ⇒ 0
√

A ↓ B, [ ], 1
√

A ↓ B
↓ R

Γ ⇒ B ∆1, C,∆2 ⇒ D

∆1,
0
√

C ↑ B,Γ, 1
√

C ↑ B,∆2 ⇒ D
↑ L

Γ1, B,Γ2 ⇒ C

Γ1, [ ],Γ2 ⇒ 0
√

C, [ ], 1
√

C
↑ R

Γ1, [ ],Γ2 ⇒ 0
√

B, [ ], 1
√

B ∆1,
0
√

C, ∆2,
1
√

C, ∆3 ⇒ D

∆1,
0
√

C ↑ B,Γ1,∆2,Γ2,
1
√

C ↑ B,∆3 ⇒ D
↑ L

Γ1,
0
√

B, [ ], 0
√

B,Γ2 ⇒ C

Γ1, [ ],Γ2 ⇒ 0
√

C ↑ B, [ ], 1
√

C ↑ B
↑ R

Figure 1.4: Rules for the discontinuous implicative connectives of the hypersequent

calculus 1-DLC

∆,Γ ⇒
−→
D

∆, I,Γ ⇒
−→
D

I L
⇒ I

I R

∆1,∆2,∆3 ⇒
−→
D

∆1,
0
√

J,∆2,
1
√

J,∆3 ⇒
−→
D

J L
[ ] ⇒ 0

√
J, [ ], 1

√
J

J R

Figure 1.5: Continuous and discontinuous rules for the units of 1-DLC

Γ1,
0
√

A, 1
√

A,Γ2 ⇒ C

Γ1,ˆA,Γ2 ⇒ C
ˆ L

Γ1, [ ],Γ2 ⇒ 0
√

A, [ ], 1
√

A

Γ1,Γ2 ⇒ ˆA ˆ R

Γ1, A, Γ2 ⇒ C

Γ1,
0
√

ˇA, 1
√

ˇA,Γ2 ⇒ C
ˇ L

Γ1,Γ2 ⇒ B

Γ1, [ ],Γ2 ⇒ 0
√

ˇB, [ ], 1
√

ˇB
ˇ R

Figure 1.6: Rules for the unary connectives ˆ and ˇ
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Γ ⇒ A ∆1, A ,∆2 ⇒
−→
D

∆1,Γ,∆2 ⇒
−→
D

Cut0
Γ1, [ ],Γ2 ⇒ 0

√
A, [ ], 1

√
A ∆1,

0
√

A,∆2,
1
√

A,∆3 ⇒
−→
D

∆1,Γ1,∆2,Γ2,∆3 ⇒
−→
D

Cut1

Figure 1.7: Cut rules for hypersequent calculus

unit I, i.e, I ⇑ I = J = {I · $ · I} = {$}. We would expect then the left rule of the

discontinuous unit to be derivable. This is not the case. In chapter 3, we will see

the problems (namely incompleteness) we face with a definable discontinuous unit.

Definition 7. A provable hypersequent S = ∆ ⇒
−→
A is the end hypersequent of a

(finite) derivation in 1-DLC, or 1-DLCε, that is, 1-DLC with units. We write

` ∆ ⇒
−→
A .

Remark 6. Within 1-DLC, or 1-DLCε, there are a variety of subcalculi depend-

ing on the sort. Morrill and Fadda [2005] have an important contribution to a

subcalculus of 1-DLC, or 1-DLCε, which they call Basic Discontinuity Calculus.

In that work, they present the hypersequent calculus restricted to the basic contin-

uous case and the discontinous connectives �, ↑, ↓ of sort functionality respectively

(1, 0) → 0, (0, 0) → 1, (1, 0) → 0, without units.

We saw before the derivation (S↑N)↓S ⇒ S/(N\S) in the categorical 1-discontinuous

calculus. The translation of this sequent to the hypersequent calculus has the same

textual form. Let’s see its proof in 1-DLC:

N ⇒ N S ⇒ S
N, N\S ⇒ S

\L

[ ], N\S ⇒ S ↑ N
↑ R

S ⇒ S

(S↑N)↓S, N\S ⇒ S
↓ L

(S↑N)↓S ⇒ S/(N\S)
/R

We give now the derivation of the discontinuous quantifier type which entails the

object-oriented continuous quantifier type:

...
S/N, [ ] ⇒ S ↑ N

↑ R
S ⇒ S

S/N, (S↑N)↓S ⇒ S
↓ L

(S↑N)↓S ⇒ (S/N)\S \R
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We will see more linguistic examples in chaper 4.

Finally, we give an answer to the problem of the prosodic interpretation of the

categorical and hypersequent calculi presented in this chapter:

- Is there a (prosodic) interpretation of the 1-DLC (and thus of the cat-

egorical calculus) which is sound and complete?

The answer is again positive. The standard prosodic interpretation in 1-graded

monoids we’ve seen in this chapter, is nearly the right one (see chapter 3).

1.4 Conclusions

We have seen a categorical calculus which is the basis of a type-logical account of

discontinuity. This calculus has been driven model-theoretically. The problems of

prosodic interpretation (soundness and completeness) and decidability have a satis-

factory answer through the translation to the hypersequent calculus 1-DLCε. This

calculus is a natural extension of the (continuous) Lambek calculus which is a pure

substructural logic without structural rules (except associativity). 1-DLCε, like the

continuous Lambek calculus LC, is a pure substructural logic without structural

rules (except associativity). In the next chapters, we study the proof theory and

semantic interpretation of 1-DLC with or without units, which as we know, con-

tains several subcalculi depending on the set of types we work with (according to

the sort).



Chapter 2

Proof theory

We present some proof-theoretical results of the hypersequent calculus. The main

result is Cut-elimination for the the 1-DLC,1-DLCε and 1-DLCˆ̌ , which is the

hypersequent calculus with two extra unary logical operators invented by Morrill

and Merenciano [MM96] (see chapter 1). These connectives, called bridge and split

are very elegant as they give a way to increment or decrement the sort of a type.

Other results cover results on invertible rules, the subformula property and as a

consequence, the decidability of 1-DLC and 1-DLCε (and 1-DLCˆ̌ ). This gives

the utility of the translation τ of the 1-discontinuous categorical syntactic calculus

to the hypersequent calculus.
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2.1 Technical preliminaries

2.1.1 On weight of types and configurations

Definition 8 (weight of types). If A is a type of sort 0 or 1,

w(A) =



w(A) = 0 if A is atomic

w(I) = 1

w(J) = 1

w(A ∗B) = w(A) + w(B) + 1 for a complex type, where * = \, /, •, ↓, ↑,�

Remark 7. Let ∆1,
0
√

A, ∆2,
1
√

A, ∆3 be the antecedent of a hypersequent. According

to the definition of the configurations (i.e., the antecedents of a hypersequent) given

in the last chapter, the meta-variables of ∆i may be (correct) configurations or not!

Consider 0
√

C, B/A,A, 1
√

C which is a correct configuration. Then, 0
√

C and 1
√

C

are not correct configurations. Our goal is to define the weight of an antecedent

configuration.

Definition 9. Let A1, · · · , An be an antecedent configuration with no occurrences of

the components 0
√

, 1
√

of a sort 1 type. Then:

w(A1, · · · , An) = w(A1) + · · ·+ w(An)

The separator doesn’t contribute to the weight of a configuration, so:

w([ ]) = 0

Consider now the configuration 0
√

C, ∆, 1
√

C with ∆ free of 0
√

, 1
√

. Then:

w(
0
√

C, ∆,
1
√

C) = w(C) + w(∆)

Lemma 3. Let ∆ be a correct antecedent configuration of a hypersequent. Let

Typ(∆) be the multiset of types occurring in ∆. Then:
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w(∆) =
∑

sort(A)=0, A∈Typ(∆)

w(A) +
∑

sort(A)=1, A∈Typ(∆)

w(A)

Proof. Induction on the recursive definition of configurations.

2.1.2 A compact representation of hypersequent calculus

In order to make less painful the proof of cut-elimination, we present a more com-

pact representation of hypersequent calculus:

If we have ∆1,
0
√

A, ∆2,
1
√

A, ∆3 ⇒
−→
C , we write instead ∆1,

−→
A (∆2), ∆3 ⇒

−→
C . If

∆ is a configuration, we can write
−→
∆(
−→
B ), which has the obvious meaning, i.e.,

∆ wraps B. If ∆ is of sort 0, then
−→
∆(
−→
B ) must be read ∆. Vectorial notation

may be nested. For example, in
−−−−−→
∆,
−−→
A\C it must be understood that ∆, A\C is split

around the separator [ ]. The nested vector arrows of types or configurations have

the meaning that they may be of sort 0 or sort 1. If ∆ is a configuration of sort

0, then
−→
∆(Θ) must be read ∆ with Θ empty, because ∆ cannot wrap anything. So,

the reader shouldn’t have problems with the weight of vectorial configurations, e.g.

w(
−→
∆(Θ)). Depending on the sort of ∆, the weight is computed as before.

2.2 Cut-elimination

We consider a new sorted rule, called the cut rule, for the hypersequent calculus.

See figure 1.7. The idea behind the cut rule is the transitivity of ⇒. The main goal

of this section is to show that this rule is admissible in the hypersequent calculus

without cut.

Definition 10 (cut formula). The type A which appears twice in the cut rule, namely

in the succedent of the left premise and in the antecedent of the right premise of cut

is called the cut formula.

Remark 8. It’s important that the reader notices that in fact this rule has two

instances according to the sort of the cut formula. Again, the compact representation
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∆ ⇒
−→
A Φ0,

−→
A (Φ1), Φ2 ⇒

−→
D

Φ0,
−→
∆(Φ1), Φ2 ⇒

−→
D

cut

Figure 2.1: Cut rule for DLC in compact notation

of hypersequent calculus is used.

Definition 11 (cut degree). Given a hypersequent calculus derivation D whose last

rule is the cut rule, and assuming that its premises have been proved without the cut

rule, we define the cut degree of the derivation as:

d(D) = w(A) + w(D) + w(∆) + w(Φ0, Φ2)

We prove now the cut elimination theorem, or admissibility of the cut rule.

Theorem 1 (cut elimination for the discontinuous calculi). The cut rule is admis-

sible for the calculi, 1-DLC, 1-DLCε, 1-DLCˆ̌ . This means that for any proof

derivation D of a given sequent S in any of these calculi with the additional rule

cut, there is a cut-free derivation D∗ whose conclusion is the sequent S.

Proof. Main idea of the proof :

The strategy of the proof follows Lambek’s proof [58]. We assume we have a hyper-

sequent calculus derivation D whose last rule is cut. The premises of the cut rule

are supposed to be cut-free derived. D has a cut degree d. We give a procedure

(effective) which transforms the derivation into a new one D∗ with the same hyper-

sequent as conclusion but whose cut degree d∗ is smaller than d. We repeat this

procedure until eventually we get a proof derivation with cut degree 0, i.e., the final

derivation is cut-free. The number of transformations is obviously finite1. So, the

procedure terminates.

The proof has the following structure:

i) Axiom case in the premises.

1Because of the Least Number Principle of ω: All strictly decreasing sequences of natural

numbers are finite.
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ii) Permutation conversions: The active formula (introduced by a rule R) of one

of the premises of cut is different from the cut formula. In this case, the

transformation is simply to apply the cut rule before R. We permute the

order of application of the rules. We will check that the resulting cut degree

is smaller.

iii) Principal cut: The active formula of both premises of cut (of cut degree d) are

the cut formula. The transformation here consists of applying the cut rule

twice, with degrees smaller than d.

Remark 9. All connectives involved in the proof are sort polymorphic.

• Axiom case

One of the Cut premises is an axiom of sort 0 or sort 1:

Suppose the left premise is the axiom:

−→
A ⇒

−→
A ∆1,

−→
A (∆2), ∆3 ⇒

−→
C

∆1,
−→
A (∆2), ∆3 ⇒

−→
C

The inference is reduced to the right premise of the cut. Analogously, for the

symmetric case.

• Permutation conversion cases

The cut is not principal. Then the cut formula is not active in one of the

premises.

- The cut formula is not active in the left premise of the cut:

- The left premise of cut is •L:

D =

∆0, B,
−→
C (∆1), ∆2 ⇒

−→
A

∆0,
−−−→
B • C(∆1), ∆2 ⇒

−→
A
•L

Φ0,
−→
A (Φ1), Φ2 ⇒

−→
D

Φ0,
−−−−−−−−−−−−−→
∆0,

−−−→
B • C(∆1), ∆2(Φ1), Φ2 ⇒

−→
D

cut
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;

D∗

∆0, B,
−→
C (∆1), ∆2 ⇒

−→
A Φ0,

−→
A (Φ1), Φ2 ⇒

−→
D

Φ0,
−−−−−−−−−−−−→
∆0, B,

−→
C (∆1), ∆2(Φ1), Φ2 ⇒

−→
D

Φ0,
−−−−−−−−−−−−−→
∆0,

−−−→
B • C(∆1), ∆2(Φ1), Φ2 ⇒

−→
D

Since w(B)+w(C) < w(B•C), w(
−−−−−−−−−−−−→
∆0, B,

−→
C (∆1), ∆2(Φ1)) < w(

−−−−−−−−−−−−−→
∆0,

−−−→
B • C(∆1), ∆2(Φ1)),

whence d(D) < d(D∗).

- The left premise of cut is \L:

D =

Γ ⇒
−→
B ∆0,

−→
C (∆1), ∆2 ⇒

−→
A

∆0,
−−−−→
Γ, B\C(∆1), ∆2 ⇒

−→
A

\L
Φ0
−→
A (Φ1), Φ2 ⇒ D

Φ0,
−−−−−−−−−−−−−−→
∆0,

−−−−→
Γ, B\C(∆1), ∆2(Φ1), Φ2 ⇒

−→
D

cut

;

D∗ =

Γ ⇒
−→
B

∆0,
−→
C (∆1), ∆2 ⇒

−→
A Φ0

−→
A (Φ1), Φ2 ⇒ D

Φ0,
−−−−−−−−−−→
∆0,

−→
C (∆1), ∆2(Φ1)Φ2 ⇒

−→
D

cut

Φ0,
−−−−−−−−−−−−−−→
∆0,

−−−−→
Γ, B\C(∆1), ∆2(Φ1), Φ2 ⇒

−→
D

\L

Again some formula material is lost in the earlier cut, so d(D) < d(D∗).

The case with rule /L is completely similar to the case with rule \L.

- The left premise of cut is obtained by rule �L:

D =

∆0,
−→
B (
−→
C (∆1)), ∆2 ⇒

−→
A

∆0,
−−−−→
B � C(∆1), ∆2 ⇒

−→
A
�L

Φ0, A(Φ1), Φ2 ⇒
−→
D

Φ0,
−−−−−−−−−−−−−→
∆0,

−−−−→
B � C(∆1), ∆2(Φ1), Φ2 ⇒

−→
D

cut
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;

D∗ =

∆0, B(C(∆1)), ∆2 ⇒
−→
A Φ0,

−→
A (Φ1), Φ2 ⇒

−→
D

Φ0,
−−−−−−−−−−−−→
∆0, B(C(∆1)), ∆2(Φ1), Φ2 ⇒

−→
D

cut

Φ0,
−−−−−−−−−−−−−→
∆0,

−−−−→
B � C(∆1), ∆2(Φ1), Φ2 ⇒

−→
D

�L

d(D) < d(D∗), for w(B) + w(C) < w(B � C).

- The left premise of cut is obtained by rule ↑ L:

D

Γ ⇒
−→
B ∆0, C(∆1), ∆2 ⇒

−→
A

∆0,
−−−→
C ↑ B(

−→
Γ (∆1)), ∆2 ⇒

−→
A

↑ L
Φ0, A(Φ1), Φ2 ⇒

−→
D

Φ0,
−−−−−−−−−−−−−−−−→
∆0,

−−−→
C ↑ B(

−→
Γ (∆1)), ∆2(Φ1), Φ2 ⇒

−→
D

cut

;

D∗ =

Γ ⇒
−→
B

∆0, C(∆1), ∆2 ⇒
−→
A Φ0, A(Φ1), Φ2 ⇒

−→
D

Φ0,
−−−−−−−−−−→
∆0,

−→
C (∆1), ∆2(Φ1)Φ2 ⇒

−→
D

cut

Φ0,
−−−−−−−−−−−−−−−−→
∆0,

−−−→
C ↑ B(

−→
Γ (∆1)), ∆2(Φ1), Φ2 ⇒

−→
D

↑ L

d(D) < d(D∗), for w(B) + w(C) < w(B ↑ C).

The case involving ↓ L is completely similar to the case with rule ↑ L.

- The cut formula is not active in the right premise of the cut. In this case,

the last rule of the right premise can be anything.

- Suppose the last rule of the right premise is \L:

D =

∆ ⇒
−→
A

Φ1,
−→
A (Φ2), Φ3 ⇒

−→
B Φ0,

−→
C (Φ4), Φ5 ⇒

−→
D

Φ0,
−−−−−−−−−−−−−−→
Φ1,

−→
A (Φ2), Φ3, B\C(Φ4), Φ5 ⇒

−→
D

\L

Φ0,
−−−−−−−−−−−−−−→
Φ1,

−→
∆(Φ2), Φ3, B\C(Φ4), Φ5 ⇒

−→
D

cut
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;

D∗ =

∆ ⇒
−→
A Φ1,

−→
A (Φ2), Φ3 ⇒

−→
B

Φ1,
−→
∆(Φ2), Φ3 ⇒

−→
B

cut
Φ0,

−→
C (Φ4), Φ5 ⇒

−→
D

Φ0,
−−−−−−−−−−−−−−→
Φ1,

−→
∆(Φ2), Φ3, B\C(Φ4), Φ5 ⇒

−→
D

\L

The new derivation has smaller cut degree, for w(B) + w(C) < w(B\C), and

then d(D∗) = w(A) + w(B) + w(Φ1,
−→
∆(Φ2), Φ3) < d(D) = w(A) + w(D) +

w(Φ0,
−−−−−−−−−−−−−−→
Φ1,

−→
∆(Φ2), Φ3, B\C(Φ4), Φ5).

Cases where the cut formula A appear in the right premise of the \L rule are

completely similar.

- Suppose the last rule of the right premise is \R:

D =

∆ ⇒ A

B, Φ0, A(Φ1), Φ2 ⇒ C

Φ0, A(Φ1), Φ2 ⇒
−−→
B\C

\R

Φ0,
−→
∆(Φ1), Φ2 ⇒

−−→
B\C

cut

;

D∗ =

∆ ⇒
−→
A

−→
B , Φ0,

−→
A (Φ1), Φ2 ⇒

−→
C

B, Φ0,
−→
∆(Φ1), Φ2 ⇒

−→
C

cut

Φ0,
−→
∆(Φ1), Φ2 ⇒

−−→
B\C

\R

Again, as expected, w(B) + w(C) < w(B\C) leads to d(D∗) < d(D).

- Suppose the last rule of the right premise is ↑ L:

D =

∆ ⇒
−→
A

Φ1,
−→
A (Φ2), Φ3 ⇒

−→
B Φ0,

−→
C (Φ4), Φ5 ⇒

−→
D

Φ0, Φ1,
−−−→
C ↑ B(

−−−−−−−−−→
Φ1,

−→
A (Φ2), Φ3(Φ4)), Φ5 ⇒

−→
D

\L

Φ0, Φ1,
−−−→
C ↑ B(

−−−−−−−−−→
Φ1,

−→
∆(Φ2), Φ3(Φ4)), Φ5 ⇒

−→
D

cut

;
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D∗ =

∆ ⇒
−→
A Φ1,

−→
A (Φ2), Φ3 ⇒

−→
B

Φ1,
−→
∆(Φ2), Φ3 ⇒

−→
B

cut
Φ0,

−→
C (Φ4), Φ5 ⇒

−→
D

Φ0, Φ1,
−−−→
C ↑ B(

−−−−−−−−−→
Φ1,

−→
∆(Φ2), Φ3(Φ4)), Φ5 ⇒

−→
D

↑ L

Again, as expected, w(B) + w(C) < w(B ↑ C) leads to d(D∗) < d(D).

Cases where the cut formula A appears in the right premise of ↑ L rule are

completely similar.

- Suppose the last rule of the right premise is ↑ R:

D =

∆ ⇒
−→
A

Φ0,
−→
A (Φ1), Φ2,

−→
B , Φ3 ⇒ C

Φ0,
−→
A (Φ1), Φ2, [ ], Φ3 ⇒

−−−→
C ↑ B

↑ R

Φ0,
−→
∆(Φ1), Φ2, [ ], Φ3 ⇒

−−−→
C ↑ B

cut

;

D∗ =

∆ ⇒
−→
A Φ0,

−→
A (Φ1), Φ2,

−→
B , Φ3 ⇒

−→
C

Φ0,
−→
∆(Φ1), Φ2,

−→
B , Φ3 ⇒

−→
C

cut

Φ0,
−→
∆(Φ1), Φ2, [ ], Φ3 ⇒

−−−→
C ↑ B

↑ R

Again, d(D) < d(D∗), for w(B) + w(C) < w(C ↑ B)

- The case in which the last rule of the right premise is ↓ L or ↓ R is completely

similar to ↑.

- The last rule of the right premise is •L:

D =

∆ ⇒
−→
A

Φ0,
−→
A (Φ1), Φ2,

−→
B (Φ3), C, Φ4 ⇒

−→
D

Φ0,
−→
A (Φ1), Φ2,

−−−→
B • C(Φ3), Φ4 ⇒

−→
D

•L

Φ0,
−→
∆(Φ1), Φ2,

−−−→
B • C(Φ3), Φ4 ⇒

−→
D

cut

;
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D∗ =

∆ ⇒ A Φ0,
−→
A (Φ1), Φ2,

−→
B (Φ3), C, Φ4 ⇒

−→
D

Φ0,
−→
∆(Φ1), Φ2,

−→
B (Φ3), C, Φ4 ⇒

−→
D

cut

Φ0,
−→
∆(Φ1), Φ2,

−−−→
B • C(Φ3), Φ4 ⇒

−→
D

•L

- The last rule of the right premise is •R:

D =

∆ ⇒ A

Φ0, A(Φ1), Φ2 ⇒ B Φ3 ⇒ C

Φ0,
−→
A (Φ1), Φ2, Φ3 ⇒

−−−→
B • C

•R

Φ0,
−→
∆(Φ1), Φ2, Φ3 ⇒

−−−→
B • C

cut

;

D∗ =

∆ ⇒ A Φ0,
−→
A (Φ1), Φ2 ⇒ B

Φ0,
−→
∆(Φ1), Φ2 ⇒ B

cut
Φ3 ⇒ C

Φ0,
−→
∆(Φ1), Φ2, Φ3 ⇒

−−−→
B • C

•R

d(D) < d(D∗), for w(B) + w(C) < w(B • C).

- Suppose the last rule of the right premise is �L:

D =

∆ ⇒
−→
A

Φ0,
−→
A (Φ1), Φ2,

−→
B (
−→
C (Φ3)), Φ4 ⇒

−→
D

Φ0,
−→
A (Φ1), Φ2,

−−−−→
B � C(Φ3), Φ4 ⇒

−→
D

�L

Φ0,
−→
∆(Φ1), Φ2,

−−−−→
B � C(Φ3), Φ4 ⇒

−→
D

cut

;

D∗ =

∆ ⇒ A Φ0,
−→
A (Φ1), Φ2,

−→
B (
−→
C (Φ3)), Φ4 ⇒

−→
D

Φ0,
−→
∆(Φ1), Φ2,

−→
B (
−→
C (Φ3)), Φ4 ⇒

−→
D

cut

Φ0,
−→
∆(Φ1), Φ2,

−−−−→
B � C(Φ3), Φ4 ⇒

−→
D

�L

d(D) < d(D∗), for w(B) + w(C) < w(B � C).

- Suppose the last rule of the right premise is �R:
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D =

∆ ⇒ A

Φ0, A(Φ1), Φ2 ⇒ B Φ3 ⇒ C
−−−−−−−−−→
Φ0,

−→
A (Φ1), Φ2(Φ3) ⇒

−−−−→
B � C

•R

−−−−−−−−−→
Φ0,

−→
∆(Φ1), Φ2(Φ3) ⇒

−−−−→
B � C

cut

;

D∗ =

∆ ⇒ A Φ0,
−→
A (Φ1), Φ2 ⇒ B

Φ0,
−→
∆(Φ1), Φ2 ⇒ B

cut
Φ3 ⇒ C

−−−−−−−−−→
Φ0,

−→
∆(Φ1), Φ2(Φ3) ⇒

−−−−→
B � C

�R

d(D) < d(D∗), for w(B) + w(C) < w(B � C).

- Suppose the last rule of the right premise is ˇL:

D =

∆ ⇒ A

Φ0, A(Φ1), Φ2, B, Φ3 ⇒ D

Φ0, A(Φ1), Φ2,
0
√

ˇB, 1
√

ˇB, Φ3 ⇒ D
ˇL

Φ0, ∆(Φ1), Φ2,
0
√

ˇB, 1
√

ˇB, Φ3 ⇒ D
cut

;

D∗ =

∆ ⇒ A Φ0, A(Φ1), Φ2, B, Φ3 ⇒ D

Φ0, ∆(Φ1), Φ2, B, Φ3 ⇒ D
cut

Φ0, ∆(Φ1), Φ2,
0
√

ˇB, 1
√

ˇB, Φ3 ⇒ D
ˇL

d(D) < d(D∗), for w(B) < w(̌ B).

- Suppose the last rule of the right premise is ˇR:

D =

∆ ⇒ A

Φ0, Φ1, A(Φ2), Φ3 ⇒ D

Φ0, [ ], Φ1, A(Φ2), Φ3 ⇒ ˇD
ˇR

Φ0, Φ1, ∆(Φ2), Φ3 ⇒ ˇD
cut

;
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D∗ =

∆ ⇒ A Φo, Φ1, A(Φ2), Φ3 ⇒ D

Φ0, Φ1, ∆(Φ2), Φ3
cut

Φ0, [ ], Φ1, A(Φ2), Φ3 ⇒ D
ˇR

d(D) < d(D∗), for w(B) < w(̌ B).

- Suppose the last rule of the right premise is ˆL:

D =

∆ ⇒ A

Φ,
−→
A (Φ), Φ, 0

√
B, 1
√

B, Φ ⇒ D

Φ,
−→
A (Φ), Φ,ˆB, Φ ⇒ D

ˆL

Φ,
−→
∆(Φ), Φ,ˆB, Φ ⇒ D

cut

;

D∗ =

∆ ⇒ A Φ,
−→
A (Φ), Φ, 0

√
B, 1
√

B, Φ ⇒ D

Φ,
−→
A (Φ), Φ, 0

√
B, 1
√

B, Φ ⇒ D
cut

Φ,
−→
∆(Φ), Φ,ˆB, Φ ⇒ D

ˆL

d(D) < d(D∗), for w(B) < w(̂ B).

- Suppose the last rule of the right premise is ˆR:

D =

∆ ⇒ A

Φ0, ∆(Φ1), Φ2, [ ], Φ3 ⇒ B

Φ0, A(Φ1), Φ2, Φ3 ⇒ ˆB
ˆR

Φ0, ∆(Φ1), Φ2, Φ3 ⇒ ˆB
cut

;

D∗ =

∆ ⇒ A Φ0, A(Φ1), Φ2, [ ], Φ3 ⇒ B

Φ0, ∆(Φ1), Φ2, [ ], Φ3 ⇒ B
cut

Φ0, ∆(Φ1), Φ2, Φ3 ⇒ ˆB
ˆR

d(D) < d(D∗), for w(B) < w(̂ B).
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• Principal cut case:

This means that the cut formula is the active formula in both premises. In this

case, the transformation is of the derivation into another one with two cuts in

which clearly their cut degrees are smaller, for some material is lost, namely

the contribution of the connective building the cut formula.

- Suppose that in the left premise the last rule is •R and in the right premise

the last rule is •L:

D =

∆1 ⇒
−→
A ∆2, [ ], ∆3 ⇒

−→
B

∆1, ∆2, [ ], ∆3 ⇒
−−−→
A •B

•R
Φ0, A,

−→
B (Φ1), Φ2 ⇒

−→
D

Φ0,
−−−→
A •B(Φ1), Φ2 ⇒

−→
D

•L

Φ1, ∆1, ∆2, Φ1, ∆3, Φ2 ⇒
−→
D

cut

;

D∗ =

∆2, [ ], ∆3 ⇒ 0
√

B, [ ], 1
√

B

∆1 ⇒ A Φ0, A,
−→
B (Φ1), Φ2 ⇒

−→
D

Φ0, ∆,
−→
B (Φ1), Φ2 ⇒

−→
D

cut

Φ1, ∆1, Φ1, ∆2, ∆3, Φ2 ⇒
−→
D

cut

- Suppose in the left premise the last rule is \R and in the right premise the

last rule is \L:

D =

−→
B , ∆ ⇒

−→
C

∆ ⇒
−−→
B\C

\R
Φ1 ⇒ B Φ0,

−→
C (Φ2), Φ3 ⇒

−→
D

Φ0,
−−−−−→
Φ1, B\C(Φ2), Φ3 ⇒ D

\L

Φ0,
−−−→
Φ1, ∆(Φ2), Φ3 ⇒ D

cut

;

D∗ =

Φ1 ⇒
−→
B

−→
B , ∆ ⇒

−→
C Φ0,

−→
C (Φ2), Φ3 ⇒

−→
D

Φ0,
−−−→−→
B , ∆(Φ2), Φ3 ⇒

−→
D

Φ0,
−−−→
Φ1, ∆(Φ2), Φ3 ⇒

−→
D

cut
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The principal cut with / is completely similar to \.

- Suppose in the left premise the last rule is �R and in the right premise the

last rule is �L:

D =

∆0, [ ], ∆2 ⇒
−→
A

∆0, ∆1, ∆2 ⇒
−−−−→
A�B

�R
Φ0,

−→
A (
−→
B (Φ1)), Φ2 ⇒

−→
D

Φ0,
−−−−→
A�B(Φ1), Φ2 ⇒

−→
D

�L

Φ0, ∆0,
−→
∆1(Φ1), ∆2, Φ2 ⇒

−→
D

cut

;

D∗ =

∆0, [ ], ∆2 ⇒
−→
A

∆1 ⇒
−→
B Φ0,

−→
A (
−→
B (Φ1)), Φ2 ⇒

−→
D

Φ0,
−→
A (
−→
∆1(Φ1)), Φ2 ⇒

−→
D

cut

Φ0, ∆0,
−→
∆1(Φ1), ∆2, Φ2 ⇒

−→
D

cut

- Suppose in the left premise the last rule is ↑ R and in the right premise the

last rule is ↑ L:

D =

∆0,
−→
B , ∆2 ⇒ C

∆0, [ ], ∆2 ⇒ C ↑ B
↑ R

Γ ⇒ B Φ0, C(Φ1), Φ2 ⇒ D

Φ0,
−−−→
C ↑ B(

−→
Γ (Φ1)), Φ2 ⇒ D

↑ L

Φ0, ∆0,
−→
Γ (Φ1), ∆2, Φ2 ⇒ D

cut

;

D∗ =

Γ ⇒ B

∆0,
−→
B , ∆2 ⇒ C Φ0, A(Φ1), Φ2 ⇒ D

Φ0, ∆1, B, ∆2(Φ1), Φ2 ⇒ D
cut

Φ0,
−−−−−−→
∆0, Γ, ∆2(Φ1), Φ2 ⇒ D

cut

Now, the last sequent of the derivation above is identical to Φ0, ∆0,
−→
Γ (Φ1), ∆2, Φ2 ⇒

−→
D
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- Suppose in the left premise the last rule is ˆR and in the right premise the

last rule is ˆL:

D =

∆0, [ ], ∆1 ⇒ 0
√

A, [ ], 1
√

A

∆0, ∆1 ⇒ ˆA
ˆR

Φ0,
0
√

A, 1
√

A, Φ2 ⇒
−→
D

Φ0,ˆA, Φ2 ⇒
−→
D

ˆL

Φ0, ∆0, ∆1, Φ1 ⇒ D
cut

;

D∗ =

∆0, [ ], ∆1 ⇒ 0
√

A, [ ], 1
√

A Φ0,
0
√

A, 1
√

A, Φ2 ⇒
−→
D

Φ0, ∆0, ∆1, Φ1 ⇒ D
cut

- Suppose in the left premise the last rule is ˇR and in the right premise the

last rule is ˇL:

D =

∆0, ∆1 ⇒ A

∆0, [ ], ∆1 ⇒ ˇA
ˇR

Φ0, A, Φ2 ⇒ D

Φ0,
0
√

ˇA, 1
√

ˇA, Φ2 ⇒ D
ˇL

Φ0, ∆0, ∆1, Φ1 ⇒ D
cut

;

D∗ =
∆0, ∆1 ⇒ A Φ0, A, Φ2 ⇒ D

Φ0, ∆0, ∆1, Φ1 ⇒ D
cut

Remark 10. Cases with units I, J are completely straightforward.

2.3 Consequences

We give some nice consequences of the cut elimination theorem:
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Theorem 2 (subformula property). Let S = ∆ ⇒
−→
A be a provable hypersequent

of 1-DLC (without unit. Then, all the formulas building a cut-free derivation of S

are subformulas of S.

Proof. All the rules of 1-DLC have this property.

Theorem 3 (decidability for 1-DLC). Let S = ∆ ⇒
−→
A be a hypersequent of

1-DLC (without unit) with cut. The provability of S is decidable.

Proof. Any proof derivation D with cut may be turned into one cut-free by the cut-

elimination theorem. The subformula property of 1-DLC leads to a finite search

space, whence provability is decidable.

Theorem 4 (decidability for 1-DLCε). Let S = ∆ ⇒
−→
A be a hypersequent of

1-DLCε (with units) with cut. The provability of S is decidable.

Proof. In some sense, the left rule of units preserve the subformula property, for

they simply disappear. The search space in a cut-free proof in 1-DLCε is still finite,

whence provability is decidable.

We turn back now to the categorical 1-discontinuous syntactic calculus of the last

chapter. It is decidable:

Theorem 5 (decidability for the combinatory 1-discontinuous syntactic calculus ).

Let A ⇒ B be a sequent of the combinatory 1-discontinuous syntactic calculus. The

provability of A ⇒ B is decidable.

Proof. Translate A ⇒ B via τ 2. Then, by theorem 4, ` τ(A ⇒ B) is decidable.

2.4 Another point

By simple application of the cut-formula, we deduce that hypersequents of the form

∆ ⇒ B|A, where | is any implicative connective, are invertible. For example, if ∆ ⇒

B ↑ A, we have
−−−→
B ↑ A(A) ⇒

−→
B , and thus by cut,

−→
∆(A) ⇒

−→
B . This hypersequent

has moreover a cut-free proof derivation (by the cut-elimination theorem).

2See the last chapter.
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2.5 Conclusions

We have proved a fundamental theorem: the cut-elimination theorem for the 1-DLC

and the 1-DLCε as well as for the 1-DLC ,̂ .̌ For the proof, a new way of mea-

suring the weight of configurations has been provided. This theorem has interesting

consequences for the decidability of 1-discontinuous categorical Lambek Calculus,

and gives the invertibility of some logical rules.





Chapter 3

Prosodic interpretation

In this chapter, we present the way to interpret sorted types as well as hyperse-

quents1. This gives consistence to our model-theoretic approach to discontinuity.

The algebraic sorted operations in the power-set algebra of a 1-graded monoid are

used to interpret types and the antecedents of hypersequents. Soundness is proved

and several completeness results are proved. Finally, a source of incompleteness is

shown. It is interesting to remark the construction of a canonical model for the

implicative (continuous and discontinuous) fragment.

1which are sorted as well.
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3.1 Prosodic interpretation of the hypersequent

calculus in 1-graded monoids

Type-logical linguists are mainly interested in the prosodic interpretations of types

in familiar structures like semigroups or monoids (for the continuous case) and

we claim that 1-graded monoids are good candidates for dealing with discontinuity

phenomena. In chapter 1, we saw a 1-graded monoid in which types are interpreted

as sorted subsets of the power set of Ṽ , P(Ṽ ). We will interpret hypersequents in

P(Ṽ ).

A continuous power-set frame over a monoid 〈V, ·, I〉, is the power-set residuated

monoid 〈P(V ), ◦, \\, //, I; ⊆〉. A discontinuous power-set frame over a monoid is

the power-set residuated 1-graded monoid 〈P(V0 ∪ (V0 · $ · V0)), ◦, \\, //, ◦̂ ,⇑,⇓

, I, J; ⊆〉.

A continuous power-set model is a power-set frame (〈P(V ), ◦, \\ ;⊆〉, J·K) =

(Fcont, J·K) with a valuation on types defined recursively over atomic variables. Sim-

ilarly, a discontinuous power-set model is a discontinuous power-set frame (〈P(V0 ∪

(V0 ·$ ·V0)), ◦, \\, //, ◦̂ ,⇑,⇓, I, J; ⊆〉, J·K) = (Fdiscont, J·K) with a valuation on the set

of (continuous and discontinuous) types defined recursively over atomic variables of

sort 0 or 1.

In the following definition, we use the algebraic operations on subsets of 1-graded

monoids defined in chapter 1. Ṽ = V0∪V1 denotes a 1-graded monoid over a monoid

V0. $ denotes its separator.

Definition 12 (type interpretation).
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JAK ⊆ V0 if A atomic of sort 0

JAK ⊆ V1 if A atomic of sort 1

JA •BK = JAK ◦ JBK

JB/AK = JBK//JAK

JA\BK = JAK\\JBK

JA�BK = JAK ◦̂ JBK

JB ↑ AK = JBK ⇑ JAK

JA ↓ BK = JAK ⇓ JBK

JIK = I

JJK = J

Definition 13 (prosodic interpretation of an antecedent configuration). Let ∆ be

an antecedent configuration. Given a discontinuous model (F, J·K), we define J∆KF

recursively on the structure of an antecedent configuration in the following way:

If ∆ = Λ:

J∆KF = JIKF

If ∆ = E for a type E of sort 0:

J∆KF = JEKF

If ∆ = Γ1, Γ2, with Γi of sort 0:

J∆KF = JΓ1KF ◦ JΓ2KF

If ∆ = Γ0,
0
√

A, Γ1,
1
√

A, Γ2, with A an arbitrary type of sort 1, and Γi of sort 0:

J∆KF = JΓ0KF ◦ (JAKF ◦̂ JΓ1KF) ◦ JΓ2KF

If ∆ = Γ1, [ ], Γ2 (Sort 1) with Γi of sort 0:

J[ ]KF = JJKF



42 CHAPTER 3. PROSODIC INTERPRETATION

J∆KF = JΓ1KF ◦ J[ ]KF ◦ JΓ2KF

If ∆ = Γ0,
0
√

A, Γ1,
1
√

A, Γ2, with A, Γ1 of sort 1, and Γ0 and Γ2 of sort 0:

J∆KF = JΓ0KF ◦ (JAKF ◦̂ JΓ1KF) ◦ JΓ2KF

Other cases for sort 1 configurations are similar.

Remark 11. In particular, if E is a type of sort 1, J 0
√

E, [ ], 1
√

EKF = JEKF

Definition 14 (interpretation of hypersequents). Let S = ∆ ⇒
−→
A be a hyperse-

quent. Given a discontinuous model (F, J·K), JSKF is defined as:

JSKF = J∆KF ∩ JAKF

Definition 15 (truth w.r.t an L-model). Let S = ∆ ⇒
−→
A be a hypersequent. Given

a discontinuous model (F, J·K):

F |= S iff JSKF = J∆KF

Remark 12. The definition 15 is equivalent to J∆KF ⊆ JAKF.

Definition 16 (validity). Let S = ∆ ⇒ A be a hypersequent:

|= S iff ∀(F, J·K) F |= S

Given a discontinuous power-set model (F, J·K), we will usually write J·K instead of

J·KF, if the frame F is clear from the context.

Theorem 6 (soundness w.r.t power-set residuated 1-graded monoids). Let S =

∆ ⇒
−→
A be a hypersequent. Then:

|= S if ` S

Proof. By induction on the length of a hypersequent derivation.
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3.2 Some results on completeness and incomplete-

ness

In this section, we prove two completeness results. The first one refers to the in-

terpretation in free 1-graded monoids (see definition 17) of the implicative fragment

(continuous and discontinuous connectives) without units. The fragment with both

units is shown to be incomplete w.r.t the class of free 1-graded monoids. The second

completeness result is for the full fragment, but this time, the interpretation is in

the class of preordered 1-graded monoids.

Definition 17. Let A be a free monoid. Let $ be an element of A different from the

unit of A. V0 denotes the free submonoid generated by A−{$}. Then, Ṽ = V0 ∪V1,

where V1 = V0 · $ · V0 is called the free 1-graded monoid of A with separator $.

Definition 18 (discontinuous L-models). Let A be a free monoid with separator $

like in the previous definition. The residuated power-set 1-graded monoid over Ṽ

with a valuation J·K, (F, J·K) is called a discontinuous language model or (discontin-

uous) L-model.

3.2.1 A completeness result for discontinuous L-models

Let T ::= F0 | 0
√
F1 | 1

√
F1 where 0

√
1
√

are the symbols used for the components of a

sort 1 type. The free 1-graded monoid over T ∪ {[ ]} with separator2 [ ], is denoted

T̃ . As usual, Ṽ = T ∗ ∪ (T ∗ · [ ] · T ∗) (T ∗ is the Kleene closure over T ). Let T be the

discontinuous power-set frame over T̃ .

Remark 13. It’s important to observe that the set of (correct) configurations O (

T̃ .

Definition 19. Let (T, J·K) be the discontinuous L-model over the free 1-graded

monoid T̃ defined above. Let us define J·K on (sort 0 or sort 1) atomic types by:

For every atomic A ∈ A, JAK = {∆ : ∆ ∈ Ṽ & ` ∆ ⇒
−→
A}

2As we know, [ ] /∈ T ∗
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CIM = (T, J·K) is called the canonical implicative model.

Lemma 4 (identity). For every A ∈ F ,

` A ⇒ A, if A is of sort 0

` 0
√

A, [ ],
1
√

A ⇒ 0
√

A, [ ],
1
√

A, if A of sort 1

Proof. By induction on the complexity of A.

Lemma 5 (truth Lemma). Let CIM =< T, J·K > be the canonical implicative model

defined above. Then:

a) For every type A (of any sort), JAK = {∆ : ∆ ∈ T̃ & ` ∆ ⇒
−→
A}.

b) For every ∆ ∈ O, ∆ ∈ J∆K.

Proof. a) In order to have a less painful proof, we restrict it to the sort function-

alities \(0,0)→0, /(0,0)→0, ↑(0,0)→1, ↓(1,0)→0. Cases with other sort functionalities,

mimic the proof of the restricted case.

Continuous connectives follow the standard proof [Bus82][Buszkowski 86] in

(continuous) Lambek calculus. Let’s see the proof for the discontinuous con-

nectives.

Discontinuous connectives:

1. "Extract" connective: For A and B types of sort 0, we have to see that

JB ↑ AK = {(∆, [ ], Γ) : ` ∆, [ ], Γ ⇒ B ↑ A}, that is,

JBK ⇑ JAK = {(∆, [ ], Γ) : ` ∆, [ ], Γ ⇒ B ↑ A}

Let us see ⊆:

Let (∆, [ ], Γ) ∈ JB ↑ AK = JBK ⇑ JAK. This means that for every

Φ ∈ JAK, ∆, Φ, Γ ∈ JBK, and then by induction hypothesis (i.h), `

∆, Φ, Γ ⇒ B. If Φ = A, then ` ∆, A, Γ ⇒ B, and by application of
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the right rule for ↑, ` ∆, [ ], Γ ⇒ B ↑ A.

For ⊇, consider (∆, [ ], Γ) such that ` ∆, [ ], Γ ⇒ B ↑ A. We have to see

that (∆, [ ], Γ) ∈ JBK ⇑ JAK, that is, for every Ω ∈ JAK, ∆, Ω, Γ ∈ JBK.

By i.h, ` Ω ⇒ A. Moreover, ` 0
√

B ↑ A, A, 1
√

B ↑ A ⇒ B. Thus, by the

cut rule, ` ∆, Ω, Γ ⇒ B, and so, by i.h., ∆, Ω, Γ ∈ JBK.

2. "Infix" connective: JA ↓ BK = {∆ : ` ∆ ⇒ A ↓ B}, that is,

JAK ⇓ JBK = {∆ : ` ∆ ⇒ A ↓ B}

Let us see ⊆:

Let ∆ ∈ JAK ⇓ JBK. Then, for every (Γ, [ ], Ω) ∈ JAK, Γ, ∆, Ω ∈ JBK. By

i.h, ` Γ, [ ], Ω ⇒ A. In particular, by lemma 4, ` 0
√

A, [ ], 1
√

A ⇒
−→
A , and

then, ` 0
√

A, ∆, 1
√

A ⇒ B. By the right rule of ↓, ` ∆ ⇒ A ↓ B.

For ⊇, consider ∆ such that ` ∆ ⇒ A ↓ B. We have to see that

∆ ∈ JAK ⇓ JBK, which means that for every (Γ, [ ], Ω) ∈ JAK, Γ, ∆, Ω ∈

JBK. By induction hypothesis, ` Γ, [ ], Ω ⇒
−→
A . By simple application,

0
√

A, A ↓ B, 1
√

A ⇒ B. Then, by cut with premises Γ, [ ], Ω ⇒
−→
A and

0
√

A, A ↓ B, 1
√

A ⇒ B, ` Γ, A ↓ B, Ω ⇒ B. Again by cut with premises

Γ, A ↓ B, Ω ⇒ B and ∆ ⇒ A ⇓ B, `, Γ, ∆, Ω ⇒ B. By i.h, Γ, ∆, Ω ∈

JBK.

b) Proof by induction on the complexity of configurations:

- If ∆ = Λ, Λ ∈ JΛK.

- If ∆ = E, where E is of sort 0:

` E ⇒ E, so by a), E ∈ JEK = J∆K.

- If ∆ = Γ1, Γ2, with Γi of sort 0:

By i.h, Γi ∈ JΓiK. So, Γ1, Γ2 = Γ1 · Γ2 ∈ JΓ1K ◦ JΓ2K = JΓ1, Γ2K.

- If ∆ = Γ1,
0
√

A, Γ2,
1
√

A, Γ3, with A an arbitrary type of sort 1, and Γi of sort

0:
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J∆K = JΓ1K ◦ (JAK ◦̂ JΓ2)K ◦ JΓ3K

By lemma 4, J 0
√

A, [ ], 1
√

AK ∈ JAK. By i.h, Γi ∈ JΓiK. Then,

Γ1 · ( ( 0
√

A · [ ] · 1
√

A) ·̂ Γ2 ) · Γ3 = Γ1 · 0
√

A · Γ2 · 1
√

A · Γ3 =

Γ1,
0
√

A, Γ2,
1
√

A, Γ3 ∈ J∆K = JΓ1K ◦ (JAK ◦̂ JΓ2)K ◦ JΓ3K = J∆K.

- If ∆ = Γ1, [ ], Γ2, with Γi of sort 0:

J∆K = JΓ1K ◦ J[ ]K ◦ JΓ2K

By i.h, Γi ∈ JΓiK. [ ] ∈ J[ ]K, so Γ1 · [ ] · Γ2 ∈ JΓ1K ◦ J[ ]K ◦ JΓ2K = J∆K.

- Finally, if ∆ = Γ1,
0
√

A, Θ, 1
√

A, Γ2, with A, Θ of sort 1, and Γi of sort 0:

J∆K = JΓ1K ◦ (JAK ◦̂ JΘK) ◦ JΓ2K

By i.h, Γi ∈ JΓiK, Θ ∈ JΘK. Moreover, 0
√

A, [ ], 1
√

A ∈ JAK.

So, Γ1 ·(( 0
√

A·[ ]· 1
√

A) ·̂ Θ)·Γ2 = Γ1,
0
√

A, Θ, 1
√

A, Γ2 ∈ JΓ1K◦(JAK ◦̂ JΘK)◦JΓ2K =

J∆K.

For every case, we have proved that ∆ ∈ J∆K.

Theorem 7 (completeness of of the implicative fragment without units w.r.t L–

models). Let S = ∆ ⇒
−→
A be a hypersequent. Then:

` S if |= S

Proof. Let us suppose |= S. In particular, CIM |= S. Then, ∆ ∈ J∆KCIM by the

Truth Lemma b). By soundness, ∆ ∈ JAKCIM, and so, by Truth lemma a),

` ∆ ⇒
−→
A .

Does the truth lemma 5 work for the full fragment of 1-DLC? See next lemma:

Lemma 6. The truth lemma stated before fails for the full fragment DL{•,\,/,�,↑,↓}

of the canonical model.
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Proof. Consider the continuous product •. The truth lemma for • would be:

JB • CK = JBK ◦ JCK = {∆ · Γ : ∆ ⇒ B and Γ ⇒ C}

Consider A, A\(B • C) ⇒ B • C. It is true that ` A, A\B • C ⇒ B • C. Then,

A, A\(B •C) ∈ JBK◦JCK. So, A, A\(B •C) = ∆ ·Γ such that ∆ ∈ JBK and Γ ∈ JCK.

Clearly this is not possible. So the truth lemma fails.

The proof for the implicative fragment of the 1-DLC with units 1-DLCε doesn’t

work.

Remark 14 (incompleteness of the implicative fragment with units w.r.t L-models).

Consider I ↑ I. The equality JJK = JI ↑ IK holds in the class of L-models. Thus,

|= J ⇔ I ↑ I is true whereas 01−DLCε I ↑ I ⇒ J . The corresponding hypersequent

0
√

I ↑ I, [ ], 1
√

I ↑ I ⇒ 0
√

J, [ ], 1
√

J is underivable.

Remark 15. The last example for incompleteness no longer holds of the larger class

of 1-graded monoids. For, there are models where (a · $ · b) ·̂ I = a · b = I and both

a and b are different from the unit3

3.2.2 The multisuccedent discontinuous Lambek Calculus

In this section, following Pentus [Pen93a], we formulate a multisuccedent hyperse-

quent calculus4. Figure 3.1 shows the calculus. Moving to the multisuccedent calculus

1-DLC µ gives a way of skipping the inherent asymmetry of the single conclusion

calculus 1-DLC or 1-DLCε. This result corresponds to the multisuccedent ver-

sions of intuitionistic logic. As an interesting application to completeness results,

we will build in the next section a canonical model based on the multisuccedent hy-

persequent calculus. This canonical model will give full completeness w.r.t a larger

(than discontinuous L-models) class of discontinuous models (see 3.2.3).

3Consider nilpotent elements. If a is nilpotent then (a · $ · a) ·̂ I = a · a = I and a 6= I. Thus,

in this model JI ↑ IK 6= {$}.
4 A remark on notation. In the following, ∆([ ]) means a (sort 1) configuration (the separator

[ ] helps the reader to realize that the configuration is of sort 1).
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Θ ⇒µ Θ
id0

Θ([ ]) ⇒µ Θ([ ])
id1

∆0, ∆1 ⇒µ Θ

∆0, I, ∆1 ⇒µ Θ
I L

∆ ⇒µ Θ0, Θ1

∆ ⇒µ Θ0, I, Θ1
I R

∆0, ∆1, ∆2 ⇒µ Θ

∆0, 0√J, ∆1, 1√J, ∆2 ⇒µ Θ
J L

∆ ⇒µ Θ0, Θ1, Θ2

∆ ⇒µ Θ0, 0√J, Θ1, 1√J, Θ2

J R

∆1, A, B, ∆2 ⇒µ Σ

∆1, A •B, ∆2 ⇒µ Σ
•L

∆ ⇒µ Σ1, A, B, Σ2

∆ ⇒µ Σ1, A •B, Σ2
•R

Γ ⇒µ A ∆1, C, ∆2 ⇒µ Σ

∆1, Γ, A\C, ∆2 ⇒µ Σ
\L

A, Γ ⇒µ C

Γ ⇒µ A\C
\R

Γ ⇒µ A ∆1, C, ∆2 ⇒µ Σ

∆1, C/A, Γ, ∆2 ⇒µ Σ
/L

Γ, A ⇒µ C

Γ ⇒µ C/A
/R

∆1, 0√A
(1)

, B, 1√A
(1)

, ∆2 ⇒µ Σ

∆1, A(1) �B, ∆2 ⇒µ Σ
�L

∆ ⇒µ Γ1, 0√A
(1)

, B, 1√A
(1)

, Γ2

∆ ⇒µ Γ1, A�B, Γ2
�R

Γ1, [ ], Γ2 ⇒µ A ∆1, C, ∆2 ⇒µ Σ

∆1, Γ1, A ↓ B, Γ2, ∆2 ⇒µ Σ
↓ L

0√A, Γ, 1√A ⇒µ C

Γ ⇒µ A ↓ C
↓ R

Γ ⇒µ B ∆1, C, ∆2 ⇒µ Σ

∆1, 0√C ↑ B, Γ, 1√C ↑ B ⇒µ Σ
↑ L

Γ1, B, Γ2 ⇒µ C

Γ1, [ ], Γ2 ⇒µ
0
p

(C ↑ B), [ ], 1
p

(C ↑ B)
↑ R

Γ ⇒µ Θ ∆ ⇒µ Φ

Γ, ∆ ⇒µ Θ, Φ
Con

Γ([ ]) ⇒µ Θ([ ]) ∆ ⇒µ Φ

Γ(∆) ⇒µ Θ(Φ)
Wrap

Figure 3.1: The 1-discontinuous multisuccedent Lambek Calculus
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Remark 16. The identity axioms includes the case [ ] ⇒µ [ ].

Definition 20 (type equivalent of sort 0). Let ∆ be a configuration of sort 0. We

define ∆• as the process of eliminating occurrences of components 0
√

, 1
√

by successive

application of the left rule of the discontinuous connective product �.

Example 2. If ∆ = 0
√

A, B, 1
√

A, then ∆• = A�B.

Remark 17. If ∆ = 0
√

A, 1
√

A, then ∆• = A� I. We could use also use the unary

bridge operator ˆ : ∆• = ˆA.

Lemma 7. If ∆ ⇒ A is a hypersequent of sort 0, then:

` ∆ ⇒ A iff ∆• ⇒ A

Proof. - Only if: ∆ ⇒ A is a provable hypersequent, the we only have to apply

successively the left rule of • and � .

- If:

It’s obvious that ∆ ⇒ ∆• (Straightforward Induction on the sort 0 configura-

tion). If ∆• ⇒ A, then by cut, ∆ ⇒ A.

What is the connection between the multisuccedent calculus 1-DLCµ and the single

succedent calculus 1-DLC?

Lemma 8. For every ∆, Φ:

• `µ ∆ ⇒µ Φ iff ` ∆ ⇒ (Φ)•.

• `µ ∆([ ]) ⇒µ Φ([ ]) iff ` (∆(C))• ⇒µ (Φ(C))•, for every C ∈ F0.

• `µ ∆([ ]) ⇒µ
0
√

A, [ ], 1
√

A iff ` ∆([ ]) ⇒ A

Proof. • only if case: Induction on the length of a DLCµ derivation.

1. Axioms:
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∆ ⇒µ ∆ and ∆([ ]) ⇒µ ∆([ ])

For every ∆ ∈ O0, ∆ ⇒ (∆)•. Similarly, for every ∆([ ]) ∈ O1, and

C ∈ F ∆(C) ⇒ (∆(C))•. The proof is by induction on the complexity

of a configuration. Moreover, if ∆ or ∆([ ]) are equal respectively to A or
−→
A , the claims hold, namely,

−→
A ⇒µ

−→
A , then

−→
A ⇒

−→
A

2. Right rules. Consider ↓. By i.h,
−→
A (∆) ⇒ B, so ∆ ⇒ A ↓ B. Left rules:

By i.h, Γ ⇒ A and ∆(B) ⇒ (Θ)•, thus by the left rule for ⇒, ∆(Γ(A ↓

B))(Θ)•.

Consider continuous product. The left rule case is obvious. Now, the

right rule case. By, i.h:

∆ ⇒ (Θ(A, B))•

We want to prove ∆ ⇒ (Θ(A • B))•. In this case, we apply cut with

(Θ(A, B))• ⇒ (Θ(A •B))•. For the discontinuous product, by i.h:

∆ ⇒ (Θ(
−→
A (B)))•

Again, we apply cut with (Θ(
−→
A (B)))• ⇒ (Θ(A�B))•.

3. Con rule:

By i.h, ∆ ⇒ Γ• and Θ ⇒ Σ•. By •R, ∆, Γ ⇒ (Θ•, Σ•)•. By application

of cut with (Θ•, Σ•)• ⇒ (Θ, Σ)•.

Wrap Rule:

By i.h, for every C ∈ F , ∆(C) ⇒ (Γ(C))• and Θ ⇒ (Σ)•. In particular,

∆((Θ)•) ⇒ (Γ(Θ•))•, so (∆((Θ)•))• ⇒ (Γ(Θ•))•. ∆(Σ) ⇒ (∆((Θ)•))•.

By (Cut), ∆(Σ) ⇒ (Γ(Θ)•). Finally, (Γ((Θ•))• ⇒ (Γ(Θ))•.
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• if case: Straightforward induction on the length of a derivation of a sequent

of the single succedent calculus.

The cut rule for DLCµ is the following:

∆ ⇒ Γ Γ ⇒ Θ
∆ ⇒ Θ

∆([ ]) ⇒ Γ([ ]) Γ([ ]) ⇒ Θ([ ])

∆([ ]) ⇒ Θ([ ])

Theorem 8. The cut rule for the multisuccedent calculus is admissible.

Proof. Let ∆, Γ, Θ ∈ O. By i.h, ∆ ⇒ Γ• and Γ ⇒ Θ•. From the last hypersequent,

we get Γ• ⇒ Θ•. By application of cut, we obtain ∆ ⇒ Θ• which is equivalent

by the previous lemma to ∆ ⇒µ Θ. Consider (cut1). Again, by i.h, for every

C ∈ F ∆(C) ⇒ (Γ(C))• and Γ(C) ⇒ (Θ(C))•. From the last hypersequent, we

get (Γ(C))• ⇒ (Θ(C))•. By application of cut, we conclude that for every C ∈ F

∆(C) ⇒ (Θ(C))• which is equivalent by the previous lemma to ∆([ ]) ⇒µ Θ([ ]).

3.2.3 Completeness for the full fragment

In order to get completeness for the full fragment (products and units), we use the

concept of preordered 1-graded monoid.

Definition 21. A preordered 1-graded monoid 〈Ṽ , I, J, ·, ·̂ ;≤〉 is a 1-graded monoid

in which ≤ is a preorder5, and such that:

• (sort preserving) If x ≤ y, x and y have the same sort.

• (compatibility of the operations) ≤ is compatible with · and ·̂ , i.e,

a ≤ a′ b ≤ b′

a · b ≤ a′ · b′
a ≤ a′ b ≤ b′

a ·̂ b ≤ a′ ·̂ b′

Definition 22 (discontinuous preordered power-set frame). A discontinuous pre-

ordered power-set frame over a (preordered) 1-graded monoid 〈P(V0∪(V0·$·V0)), ◦≤, \\
5A preorder is a reflexive and transitive relation. If one adds symmetry, we get a partial order.
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, //, ◦̂≤ ,⇑,⇓, I, J; ⊆〉 = Fdiscont .

In order to define the new type interpretation, we need the concept of downward-

closed subsets:

Definition 23 (downward-closed sets). Given a preordered set (X,≤), we say that

A ⊆ X is downward-closed (d.c), if:

∀x(∃a(a ∈ A & x ≤ a) → x ∈ A).

We define now the interpretation of types in discontinuous preordered power-set

frames as:

Definition 24 (type interpretation in discontinuous preordered power-set frames).

JAK ⊆ V0, if A ∈ A0, and such that JAK is (d.c)

JAK ⊆ V1, if A ∈ A1, and such that JAK is (d.c)

JA •BK = JAK ◦≤ JBK = {e : ∃a, b a ∈ JAK & b ∈ JBK & e ≤ a · b}

JB/AK = JBK//JAK

JA\BK = JAK\\JAK

JA�BK = JAK ◦̂≤ JBK = {e : ∃a1 · $ · a2 ∈ JAK, b ∈ JBK ∧ e ≤ (a1 · $ · a2) ·̂ b}

JB ↑ AK = JBK ⇑ JAK

JA ↓ BK = JAK ⇓ JBK

JIK = I≤ = {δ : δ ≤ I}

JJK = J≤ = {δ1 · $ · δ2 : δ1 · $ · δ2 ≤ $}

The definition 24 is such that that all interpreted types are d.c:

Lemma 9. For every A ∈ F , JAK is d.c.

Proof. By induction on the complexity of types. Atomic types and units are d.c

by definition. JA • BK and JA � BK are d.c, for ◦≤ and ◦̂≤ are by definition d.c.

Now, if δ′ ≤ δ such that δ ∈ JAK\\JBK, then δ′ ∈ JAK\\JBK. For, for every a ∈ JAK,
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a · δ′ ≤ a · δ 6. By definition of \\, a · δ ∈ JBK, and by induction hypothesis (i.h),

JBK is d.c. Thus, a · δ′ ∈ JBK for every A, which proves that δ′ ∈ JAK\\JBK.

If δ′1 ·$ · δ′2 ≤ δ1 ·$ · δ2 such that δ1 ·$ · δ2 ∈ JBK ⇑ JAK then δ′1 ·$ · δ′2 ∈ JBK ⇑ JAK. For

every a ∈ JAK, by the compatiblity of ·̂ and ≤, (δ′1 ·$ · δ′2) ·̂ a ≤ (δ1 ·$ · δ2) ·̂ a ∈ JBK.

Thus, by i.h, δ′1 · $ · δ′2 ∈ JBK ⇑ JAK. Cases involving // and ⇓ are completely

similar.

Definition 25 (discontinuous model over a preordered 1-graded monoid). A dis-

continuous preordered power-set model is a discontinuous power-set frame (〈P(V0 ∪

(V0 · $ · V0)), ◦≤, \\, //, ◦̂≤ ,⇑,⇓, I≤, J≤; ⊆〉, J·K) = (Fdiscont, J·K) with a valuation

on the set of (continuous and discontinuous) types defined recursively over atomic

variables of sort 0 or 1 as in definition 24.

Theorem 9 (soundness of 1-DLC w.r.t the class of discontinuous models over pre-

ordered 1-graded monoids).

Proof. Cases involving binary connectives are identical to the standard semantics

(1-graded monoids). It remains to see the units rules. Right rules don’t have any

problems. Left rules hold, for ≤ is compatible with · and ·̂ .

Our next step is to get completeness for the full calculus (products and units). Con-

sider the construction of the canonical implicative model of theorem 7. We extend

now the canonical model to the continuous and discontinuous product-types and units

extending the universe (of the model) to configurations including all the possible

types. The preorder of the canonical model is ⇒µ. Let’s denote the canonical model

CM. Its valuation defined over atomic types is as follows:

∀A ∈ A, JAK = {∆ : ∆ ∈ & ` ∆ ⇒µ A}

Theorem 10 (preordered 1-graded monoid completeness).

Theorem 11 (truth lemma). For every A ∈ F :

6By the compatibility · and ≤.
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a) ∀A ∈ A, JAK = {∆ : ∆ ∈ & ` ∆ ⇒µ A}

b) ∀∆ ∈ O, ∆ ∈ J∆K

Remark 18. If A ∈ F and ∆ ∈ O, then by lemma 7, ∆ ⇒
−→
A iff ∆ ⇒µ

−→
A .

Proof. of theorem 11. The problem for products, say continuous product, is ⊇. Let

us suppose ∆ such that ∆ ⇒ A • B. But here, the proof doesn’t fail. For, take

∆A := A and ∆B := B. Then, there exists ∆A and ∆B, such that ∆ ⇒ A • B. So,

⊇ holds. Discontinuous product is completely similar.

Finally, consider units. By definition, JIK = {∆ : ∆ ⇒µ I}, and JJK = {∆0, [ ], ∆1 :

∆0, [ ], ∆1 ⇒µ
0
√

J, [ ], 1
√

J}.

As in theorem 7 we get completeness:

Theorem 12. 1-DLC and 1-DLCε are complete w.r.t the class of preordered dis-

continuous models.

3.3 Conclusions and future work

We have seen several completeness results. This gives us coherence to the model-

theoretic driven approach to the development of a calculus dealing with discontinuity.

The incompleteness (see the problem with J
def
= I ↑ I.) w.r.t. the class of free 1-

graded monoids leads us to conjecture that completeness holds, if we replace J by

I ↑ I in hypersequent rules involving the discontinuous unit J .

On the one hand, types inferences in the categorical calculus only involve types,

whereas in 1-DLC (or 1-DLCε), hypersequents (not in the case of the multisucce-

dent calculus) have an asymmetry between antecedents and succedents. We could

have used the translation τ between the 1-discontinuous categorical calculus and the

hypersequent calculus to explore completeness via the construction of the Linden-

baum algebra.



Chapter 4

Linguistic applications

and generative capacity

In this chapter we present the 1-DLCε at work. The definitions of signs, sort

0,1 lexicons, language recognition and string language recognition are given. Then,

we present several linguistic phenomena in which discontinuity is involved. Parti-

cle verbs, discontinuous functors, medial extraction, cross-serial dependencies (in

Dutch), gapping and quantifier raising are studied. Finally, the weak generative

capacity of 1-DLCε is related to Head Grammars [Pollard 1984] and the so-called

mildly-context sensitive formalisms [Seki, et al 1991].
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4.1 Languages generated by 1-discontinuous Lam-

bek grammars

Idea of the language generated by the 1-discontinuous Lambek calculus.

Definition 26 (lexicon of signs). A lexicon Lex is a finite set of signs {wi − µi :

Ai}i=1,··· ,n, where wi are respectively prosodic forms, µi semantic forms (λ-terms),

and Ai a syntactic type. Moreover, the semantic type of µi is given by the homo-

morphism between syntactic types and semantic types, and the prosodic sort of wi

by the sort homomorphism.

Example 3. A lexicon:

• everyone− everyone : (S ↑ N) ↓ S

• loves− love : (N\S)/N

• someone− someone : (S ↑ N) ↓ S

• neither · $ · nor − λxλyλz¬[(x z) ∨ (y z)] : ((N\S)/(N\S)) ↑ (N\S)

The semantic form everyone has the following definition: λP∀z[(person z) →

(P z)] (similar λ-term for someone). The last sign contains a prosodic form of

sort 1 (and thus a syntactic type of sort 1).

Definition 27 (sort 0 and 1 lexicon). A sort 0 lexicon Lex is a lexicon in which all

syntactic types are of sort 0. A sort 1 Lex is a lexicon in which at least a sign has

a syntactic type of sort 1.

Definition 28 (language recognition). Given a lexicon Lex and a target symbol

S (S is a type of arbitrary sort), we define the language generated by Lex and

target symbol S L(Lex, S) as {w − µ : S| there exists an assignment of types for

w, such that there exists a configuration ∆ in which types occurring in ∆ belong

to the lexical assignment, and ∆ ⇒ S}. µ is the semantics of one of the possible

derivations of ∆ ⇒ S. The set of prosodic forms belonging to L(Lex, S) is called

the string language generated by Lex.
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4.2 Linguistic applications: 1-DLCε at work

We show 1-discontinuous lexicons and derivations in 1-DLC-ε. Examples and type

assignments follow ideas from Morrill [1992, 1994, 2000], Solias [1992], and Morrill

and Merenciano [1996].

- Medial extraction:

‘man that Peter saw e yesterday’ (1)

that− rel : (CN\CN)/((S ↑ N)� I)

man−man : CN

Peter − peter : N

saw − see : (N\S)/N

yesterday − yesterday : S\S

The that-relative with medial extraction cannot be derived in LC1:

The derivation for (1) 1-DLCε is:

...
N, (N\S)/N, N, S\S ⇒ S

N, (N\S)/N, [ ], S\S ⇒ S ↑ N
↑ R ⇒ I

I R

N, (N\S)/N, S\S ⇒ (S ↑ N)� I
�R

CN,CN\CN ⇒ CN

CN, (CN\CN)/((S ↑ N)� I), N, (N\S)/N, S\S ⇒ S
/L

Remark 19. The assignment that−rel : (CN\CN)/̂ (S ↑ N) works for the medial

extraction as well:

The derivation for (1) 1-DLC ,̂ˇ is:

1Only extraction at the periphery.
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...
N, (N\S)/N, N, S\S ⇒ S

N, (N\S)/N, [ ], S\S ⇒ S ↑ N
↑ R

N, (N\S)/N, S\S ⇒ ˆ(S ↑ N)
ˆR

CN,CN\CN ⇒ CN

CN, (CN\CN)/̂ (S ↑ N), N, (N\S)/N, S\S ⇒ S
/L

- Topicalisation:

‘Bill John knows Mary loves’ (2)

Consider the (sort 0) lexicon:

Bill − bill : S/((S ↑ N)� I)

John− john : N

Mary −mary : N

knows− know : (N\S)/S

loves− love : (N\S)/N

S ⇒ S

...
N, (N\S)/S,N, (N\S)/N, [ ] ⇒ S ↑ N ⇒ I

N, (N\S)/S,N, (N\S)/N ⇒ (S ↑ N)� I

S/((S ↑ N)� I), N, (N\S)/S,N, (N\S)/N,⇒ S

Remark 20. Again, the unary operator ˆ can replace the use of the continuous unit

I. So, for topicalisation we can type Bill with S/ˆ(S ↑ N):

S ⇒ S

...
N, (N\S)/S,N, (N\S)/N, [ ] ⇒ S ↑ N

N, (N\S)/S,N, (N\S)/N ⇒ (̂S ↑ N)
ˆR

S/ˆ(S ↑ N), N, (N\S)/S,N, (N\S)/N,⇒ S

- discontinuous functors Consider discontinuous functors as the following:

‘Mary rang John up’ (3)

Consider the (sort 1) lexicon:
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rang · $ · up− phone : (N\S) ↑ N

Mary −mary : N

John− john : N

The 1-DLC for (2) is:

N ⇒ N N, N\S ⇒ S

N, 0
√

(N\S) ↑ N,N, 1
√

(N\S) ↑ N ⇒ S
↑ L

- Parenthetical adverbials:

Consider the parenthetical adverbial example:

‘La Maria sortosament agafa el tren’ (4)

‘La Maria agafa sortosament el tren’ (4’)

‘La Maria agafa el tren sortosament’ (4”)

Consider the (sort 0) lexicon:

sortosament− always : (S ↑ I) ↓ S

agafa− take : (N\S)/N

La ·Maria−maria : N

el − iota : N/CN

tren− train : CN

The derivation for (3) is:

...
N, (N\S)/N, CN/N,N ⇒ S

N, I, (N\S)/N, CN/N,N ⇒ S
I L

N, [ ], (N\S)/N, CN/N,N ⇒ S ↑ I S ⇒ S

N, (S ↑ I) ↓ S, (N\S)/N, CN/N,N ⇒ S
↓ L

Instead of the type assignment (S ↑ I) ↓ S we could have used (̌ S) ↓ S:
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...
N, (N\S)/N, CN/N,N ⇒ S

N, I, (N\S)/N, CN/N,N ⇒ S
ˇR

N, [ ], (N\S)/N, CN/N,N ⇒ ˇS S ⇒ S

N, (̌ S) ↓ S, (N\S)/N, CN/N,N ⇒ S
↓ L

Cases (3’) and (3”) are generated in the same manner. In these cases both type

assignments (with unit and the split unary operator) work as well.

Remark 21. The unary operator ˇ can avoid the use of the continuous unit I

- Quantifier raising:

The quantifier (we saw in chapter 1) (S ↑ N) ↓ S works in subject position as

well as in object position for everyone, everything. Different readings (narrow, wide

scope) are derived (in different derivations!).

- Gapping constructions:

‘John Coltrane played the tenor saxophone and Elvin Jones, the drums’ (5)

A possible type for and is (((S ↑ TV )�TV )\S)/(S ↑ TV ). Solias proposes another

type assignment in terms of another type constructor that we are able to translate

in 1-DLCε with type (((N • J •N)� TV )\S)/(N • J •N). Observe the use of the

discontinuous unit J.

- Dutch subordinate clause cross-serial dependencies

‘Jan het boek wil kunnen lezen’ (5)

( ’John wants to be able to read the book’)

Consider the following sort 1 lexicon:
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Jan− jan : N

het− iota : N/CN

boek − book : CN

wil −want : (N\S−) ↓ (N\S)

$ · kunnen− be able : (N\S−) ↓ (N\S−) =: K

$ · lezen− read : N\(N\S−) =: L

Here’s a 1-DLC derivation of (5):

N ⇒ N CN ⇒ CN

N/CN, CN ⇒ N
\L

N ⇒ N
0√

S−, [ ],
1√

S− ⇒
−→
S−

N, 0
q

N\S−, [ ], 1
q

N\S− ⇒ S−

\L

N/CN, CN,
0√

L, [ ],
1√

L ⇒
−−−−→
N\S−

\L −−−−→
N\S− ⇒

−−−−→
N\S−

N/CN, CN,
0√

L,
0√

K, [ ],
1√

K,
1√

L ⇒
−−−−→
N\S−

↓ L N ⇒ N S ⇒ S

N, N\S ⇒ S

N, N/CN, CN,
0√

L,
0√

K, (N\S−) ↓ (N\S),
1√

K,
1√

L ⇒ S
↓ L

The derivational semantics (with the lexical semantics of the types) gives the ex-

pected logical form ((want be able(read (iota book)))) j).

Remark 22. In general we have omitted the derivational semantics via the Curry-

Howard homomorphism (and with the lexical semantics). The reader is invited to

check that the logical forms obtained are correct.

4.3 On the weak generative capacity of 1-DLC

grammars

In this section we see that lexicalized Head Grammars (HG) (in an adapted version

of Roach [1987]), are weakly-equivalent to 1-DLC grammars. Moreover, a fragment

of 1-DLC grammars is shown to be weakly-equivalent to HG grammars. The class

of head Grammars (invented by Pollard [84]) is a proper subclass of the class of

Multiple Context-Free Grammars (MCFG) (Seki et al [1991]). The grammars of

MCFG are context-free rewriting systems generated by linear (or regular) functions

defined on sets of tuples of strings. These formal systems are mildly context sensi-

tive formalisms (MCS formalisms), which are supposed to be a very promising (in

cognitive terms) approach to natural language (see e.g. Stabler [2004]). MCSFs have

the following properties:
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• Universal polynomial recognition.

• Account of (limited) crossed-dependencies.

• The constant growth property, which means that if a MCS language L is ordered

in an indexed union of sets L =
⋃

Li according to the length of the recognized

strings, the length(Li+1−Li) is bounded by a (finite) constant. So, for example

a language like {a2n
, n > 0}, which is recognized by unification grammars (say,

an LFG grammar), cannot be a MCS language.

A linear function f from V k1 × · · · × V kn → V j1 × · · · × V jm, f( ~x1, · · · , ~xn) =

( ~x1, · · · , ~xm), is such that every component of a tuple in the domain of f appears in

the image by f at most once.

Example 4.

• ((x1, x2), (y1, y2)) 7→ (x1y1, y2x2)

• (x1, x2) 7→ (x1x2)

• (x1, x2) 7→ (ax1b, cx2d), where a, b, c, d are string parameters.

Definition 29. A HG grammar is a context-free rewriting system with three op-

erations conc1, conc2,wrap(functions) defined on nonterminal symbols NT and

terminal symbols T. NT and T are represented by pairs.

Let’s see conc1, conc2,wrap:

conc1((x1, x2), (y1, y2)) = (x1, x2y1y2)

conc2((x1, x2), (y1, y2)) = (x1x2y1, y2)

wrap((x1, x2), (y1, y2)) = (x1y1, y2x2)

Example 5. Let G be the HG grammar with the production rules:

- S → conc2((a, ε), A)|Λ

- A → wrap(S, (b, c))

Implicitly, the non-terminals are assumed to be pairs.
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Theorem 13. Let G be the HG grammar with target symbol s with lexicalized pro-

duction rules: {Xi → wrap(αi, βi)}i=1,...,n, n>0 ∪ {Zj → wj}j=1,...,m, m>0, where at

least αi or βi is a terminal. Then, the string language recognized by L(G) is gener-

ated by a 1-sort lexicon (1-DLC) grammar.

Proof. For every unary rule A → w, categorize the sort2 1 string w as A, i.e.,

w : A. In the case of binary rules (conc1, conc2, and wrap,), say X → wrap(a, Y ),

categorize a as a : X ↑ Y . The other case is symmetrical. Observe, that our sort 1

lexicon contains first-order types, so right rules of ↑, ↓ don’t apply. It’s easy to see

that derivations of both systems are in a bijective correspondence. So, the string

language generated by the 1-DLC lexicon is the same that L(G).

Theorem 14. Let Lex be a sort 1 1-DLC lexicon, restricted to the connectives

↑, ↓,� with sort functionalities (1, 1) → 1. Then, L(Lex, s) is recognised by a head

grammar.

Proof. The fragment 1-DLC↑(1,1)→1,↓(1,1)→1,�(1,1)→1
is completely isomorphic to the

continuous Lambek calculus LC. Map � to •, ↑ to / and ↓ to \. The implicit

rule of associativity is in both calculi. Sort 1 atomic variables are mapped to a set

(equipotent) of (sort 0) atomic variables. By the Pentus theorem [1993], there exists

a context-free grammar G which recognizes the string language generated by a LC

grammar. Translate the context-free grammar to the restricted case, and interpret

concatenation by wrap. Thus, we are done.

4.4 Conclusions

1-DLCε or (1-DLC ,̂ )̌ account for several discontinuity phenomena giving them

the right semantic (or logical) forms. We have seen some results on the weak genera-

tive capacity of 1-DLC grammars, and there arises a suggestive idea: 1-DLC meets

two of the three characteristic properties of MCS formalisms, namely the constant

2Tuples of strings w are in natural bijection with prosodic forms of sort 1: (x, y) 7→ x · $ · y.
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growth property and an adequate description of (limited) cross-serial dependencies.

However, the universal polynomial recognition is not possible for the 1-DLCε, for

Pentus [2003] has proved that the Lambek calculus is NP-complete. We conjecture

that the full 1-DLCε has still the weak generative capacity of Head Grammars. Fol-

lowing Pentus’ ideas on interpolation and the multiplicative property of 1-DLCε3,

may be a good point of departure. Finally, a remark on the so-called strong generative

capacity (SGC). SGC is the set of structural descriptions of a language. Usually,

structural descriptions are interpreted in terms of trees. Here however, we posit

that cut-free proof derivations modulo permutations of the application of rules (not

affecting the derivational semantics) are the real structural descriptions of 1-DLCε.

3Basic mathematical tools to prove that Lambek grammars are context-free.
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Conclusions

A pure logical calculus without structural rules has been presented: the 1-DLCε. We

think according to the data and the mathematical results, that the 1-discontinuous

Lambek calculus is adequate to account for a range of discontinuity phenomena.

Moreover, the calculus seems to meet the criteria of the so-called mildly context

sensitive formalisms, namely Head Gramars. Moreover, the extension of the Lambek

calculus to hypersequent calculus preserves the elegancy of the former calculus, for

the mathematical results of 1-DLC are in some sense parallel to the Lambek calculus

(semantic results and proof-theoretical results).

Processing issues in LC, have shown that (cut-free) proof nets or the abstract

representation of cut-free derivations are a very elegant method to study acceptability

and incremental processing of sentences. Morrill [Morrill 2000] shows how a variety

of linguistic phenomena including garden-pathing, left to right scope preference in

quantified sentences and center embedding unacceptability are explained in terms

of a simple complexity metric measuring the number of open dependencies at each

step of processing of the sentence. In Bott, Valentin [2004], LC proofnets are used

for the study of the incremental semantic interpretation of generic indefinites. In

Morrill [Morrill 2003], where discontinuity is considered, the delay of principle B

effect is explained in terms of proofnets for the ω-DLC (see chapter 1). It seems

that 1-DLCε and maybe ω-DLCε will have a proofnet machinery similar to the LC

case.
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The use of the continuous and discontinuous units has shown to be very useful:

• The bridge unary operator could be simulated with the units: ˆS
def
= S � I, for

S of sort 1.

• The split unary operator could be simulated with the units: ˇS
def
= S ↑ I, for S

of sort 0.

• The connective “sequence” (see gapping constructions in chapter 4) could be

simulated with the units: A♦B
def
= A • J •B.

5.1 Future work

We could have considered (following [Morrill 2002]), a hybrid 1-DLCε with multiple

different types of prosodic separators $v. Types would be at most 1-sorted, but more

fine-grained because new (sort 1) continuous and discontinuous connectives could be

used (e.g., ↓v for v = 1, . . . , n, n ≥ 0). We conjecture that the results obtained

for the 1-DLCε can be extended in a natural way to the ω-DLCε (joint work with

Morrill and Fadda). The reader will have noticed that the logic studied in this work

is essentially associative. As a matter of fact, the LC is known as the associative

Lambek Calculus. We claim that the 1-DLC with or without units could be called the

associative 1-discontinuous Lambek calculus. Several authors in the field (Moortgat

[1995] and Morrill [1994]) have realized that an associative type-logical grammar

may lead to problems of overgeneration. Non-associativity has been studied in depth

in type-logical grammar, so it remains to explore the use of non-associativity with

something similar to a hypersequent calculus.

Type-logical grammar has shown that unary connectives (the so-called “brackets”)

are very useful to prevent the violation of some of the famous Ross constraints (See

Morrill [1994]). “Brackets” are useful to control associativity. We think that these

tools have (model-theoretically) their place in sorted 1-graded monoids, and hence in

the hypersequent calculus.
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Finally, we could go beyond pairs of strings. It should be checked the viability of

calculi similar to the 1-DLC, using other residuated connectives defined in terms of

more complex linear functions of tuples of strings.
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