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1 INTRODUCTION 
 
In the last ten or fifteen years we have witnessed a renewed interest in the development 
of language technologies as one of the main building blocks of what some visionaries 
have termed tomorrow’s Information Age (see, for example, Dertouzos 1997). 
 
As human-machine interactions become increasingly frequent every day, any step in the 
direction of making these interactions more fluid will be a step forward in the 
construction of this new world of the information age. Of course, the obvious way to 
gain fluidity and smoothness in human-machine interactions is to make them as natural 
as possible, and what is more natural for a human being than using language for 
communication? So the argument goes. Leaving aside a number of issues concerning 
human communicative actions and the role that a number of extralinguistic factors play 
in this behavior,1 it is certainly true that the only way of coming close to the world 
depicted by some science fiction writers (think of Arthur Clarke’s HAL 9000 or 
Douglas Adams’ Babel Fish) is to be able to communicate with artificial entities by 
natural means. 
 
Insofar as this is a common enterprise in which many different scientific communities 
participate, with distinct views and perspectives, I believe we can identify two different 
(one would expect that complementary) ways to look at the problem of human-machine 
communication. On one side, we find an engineering, application-driven approach 
which, being application-driven, is mainly interested in building systems that work and 
that are able to provide some efficient, even if limited, service to users. This approach is 
characterized by taking what could be called a divide-and-conquer strategy, focusing on 
very specific problems with a clear industrial or commercial application and finding a 
solution for them. A good (and successful) example of this is the VERBMOBIL project, 
in which a number of German public and private institutions have been involved in the 
last eight years and which closed its phase II at the end of July 2000. The system is a 
speech-to-speech translation device designed as an aid for two individuals interacting in 
different languages with the goal of fixing a date for a meeting.2 As the reader may 

                                                 
* This paper is a revised and slightly expanded version of a talk delivered at the Summer School on 
Language Technologies at the Universidad Internacional Menéndez Pelayo in Barcelona. I wish to thank 
the organizers, Toni Badia and Marsal Gavaldà, for giving me the opportunity to participate in the 
course. Raquel Fernández read a first draft of the paper and made some helpful comments and 
suggestions. All remaining errors are my own. The work reported here was partially funded by research 
grants PB96-1199-C04-01 from the Spanish Ministerio de Educación y Ciencia, and 1999SGR/00113 
and CREL 9 from the Generalitat de Catalunya. 
1The issues are too complex and space is too meager for even attempting a review, but just to make the 
point, in face-to-face interactions, human communicative behavior goes well beyond speech and is full of 
visual cues and gestures with specific functions that help making the interaction more fluid (see Hauser 
1996 for discussion and references). This example alone may be helpful in providing an idea of the 
dimensions of the problem of modeling communicative behavior. 
2Further information about VERBMOBIL may be found in its home page at http://verbmobil.dfki.de/ and 
in a recently published monograph, Wahlster, ed. (2000). 
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immediately notice, VERBMOBIL, with all its success, is nothing but a grain of sand in 
the road leading us to the Babel Fish. The point is that this system is not an all-purpose 
speech-to-speech translation system—something that no one has been able to do so far 
and that is probably not forthcoming in the next future, but a system that works within 
an extremely restricted universe (that of meeting dates) that represents a tiny part of 
many (infinite?) communicative situations in which humans may participate. That 
VERBMOBIL works is certainly good news, but it is important no to forget that it works 
precisely because it was designed to work within the limited universe in which it works. 
It is important because, as M. García Carpintero pointed out in the round table held 
during the closing session of the Workshop, the flashing success exhibited by the 
engineering approach in some respects may easily hide the real state of our current 
knowledge about how human language really works and may create some false 
expectations about the future of language technologies. As this has already happened 
and the outcome was the ALPAC report of 1964 with its devastating consequences for 
the field, it is wise to take García Carpintero’s advise seriously.3 
 
But what can we do, then? My contention in this paper will be that, with all the success 
of the engineering approach notwithstanding, a parallel and much more long term 
oriented approach must be pursued: what I call here the computational approach. I 
could also have used the words ‘cognitive modeling’, as this approach is based on the 
premise that a possible solution for the problems I’ve been discussing is to be able to 
reproduce the ‘real thing’ by artificial means, and, so far, the ‘real thing’ is the 
collection of human cognitive capacities that participate in communicative behavior.4 
 
My plan for the rest of this paper is to give a rough-and-ready picture of how we can 
look at natural language processing from this perspective by discussing, first, what I 
believe is the central tenet of the computational approach: the distinction between a 
theory of representations and a theory of processes. As I go on, I will try to provide 
examples of how these theories interact and how they can influence each other. A 
cautionary note is at stake before I go on, however: Cognitive Science is an extremely 
heterogeneous discipline where converge (and often diverge) the interests and methods 
of psychology, computer science, linguistics, philosophy and neuroscience (to name the 
disciplines most clearly involved in the study of human cognition), but within which 
many disparate theoretical positions are held. Thus, it will almost certainly be the case 
that many cognitive scientists disagree with much of what I will say here. 
 
 
2 THE COMPUTATIONAL PERSPECTIVE 
 

                                                 
3For a quick review of the history of the field, the reader may like to read Wilks & Sparck Jones (1983). 
The paper is also interesting because, even if written in 1983, many points that it makes are still 
applicable today in the year 2000. Another illustrative paper is Dennett (1998; originally 1985) together 
with is Postscripts. 
4This is not to say that the goal of Cognitive Science is to simulate human behavior artificially (although 
it will be an error to despise the enormous possibilities of computer models in this kind of research; see 
the papers in Langton et al, eds. 1992 for some striking examples), as the goal of understanding and 
explaining the mysteries of human cognition is an enormous and enticing scientific enterprise in itself. 
My point is that, in the long run, one may derive more benefits than losses by also pursuing the more 
theoretical avenue of the cognitive sciences. In fact, I believe that most human and social sciences will 
benefit from taking the cognitive approach seriously. Some, like archaeology, appear to have gotten the 
message (see Renfrew & Zubrow, eds. 1994), others, like economics, remain in cognitive oblivion (with 
notable exceptions, see Frank 1988). 



 3

As the title to this paper suggests, my intention here is to look at the problem of Natural 
Language Processing (henceforth NLP) from a computational perspective. In other 
words, the NLP problem, whatever our ultimate goals are, is better approached from a 
computational perspective and with computational means. But, what it means for 
something to be computational? Well, the answer to this question is much less obvious 
than you might expect. The point is that if you think that an answer to this question 
necessarily involves making some reference to computers, then, you are wrong. True, 
computers are devices for performing computations (whatever that may be), but they 
are not the only computational devices: brains are computational devices, abacuses are 
computational devices, and your hand, armed with pencil and paper is a computational 
device too. A nice property of computational processes is that we can look at them from 
a perspective that is totally independent from the device that actually implements them. 
This is not to say that implementation is irrelevant, but just that we can go a long way 
learning about a computational problem without taking this particular matter into 
account; this is one of the most important elements of the intellectual legacy of the 
British mathematician Alan Turing, and it is good not to forget it. 
 
But let’s go back to our question, what it means for something to be computational? 
Here, I will need some special help, so let me quote the following lines from a book by 
the late cognitive scientist David Marr (1982, pp. 24-25):5 
 
«[T]he different levels at which an information processing device must be understood 
[are:] At one extreme, the top level, is the abstract computational theory of the device, 
in which the performance of the device is characterized as a mapping from one kind of 
information to another, the abstract properties of this mapping are defined precisely, 
and its appropriateness and adequacy for the task at hand are demonstrated. In the 
center is the choice of representation for the input and output and the algorithm to be 
used to transform one into the other. And at the other extreme are the details of how the 
algorithm and representation are realized physically—the detailed computer 
architecture, so to speak.» 
 
I’ve highlighted a number of terms in this quote, which will help us define the thread 
we will be following from now on. Marr was primarily concerned with modeling 
human vision, but, and here you see the beauty of Turing’s ideas at work, this is totally 
irrelevant, as one of the advantages of taking a computational perspective is that we 
have a general framework for looking at several different things from this view. OK, 
then, now we have some fairly important points to make about NLP, namely that: 
 
● It can be defined as an information processing task to be characterized as a 

mapping from an input representation to an output representation, such that 
the mapping may be described by means of a specific algorithm. 

 
I left the highlights on the keywords because, leaving aside for the moment the fact that 
NLP is an information processing task, I want to spend some time discussing the 
relevance of the other elements and analyzing the relations that hold between them. Let 
me start with an analogy that may be of some use presently. Consider an artistic activity 
like sculpture. In a preliminary stage of producing a sculpture, the author designs it 
project as an abstract mapping from some (yet to be determined) lump of matter and a 
                                                 
5Marr’s definition of the three levels is useful to start the discussion, this is not to say that it is without 
problems and that others, probably more accurate definitions are possible; see Jackendoff (1987, Ch. 4) 
and Peacocke (1986), for discussion of this particular topic. 
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specific form that only exists in the mind of the sculptor and/or as a series of sketches 
on paper. In the second stage, the author needs to decide what type of material is she 
going to use. There are several considerations that do not concern us here (e.g., 
aesthetic ones or considerations relating to preferences and skills of the sculptor), the 
point is that, whether the sculpture is going to be made of stone, wood or metal, this 
decision determines the production process in the sense that every material must be 
treated with the appropriate techniques (i.e., you can carve wood, but you cannot melt 
it); and the other way round, if our sculptor prefers to use some specific technique, she 
won’t be able to use any kind of material. 
 
The point with this analogy and that I expect to make clearer with the following 
example is that, in many cases, the nature of the entities that participate in the process 
determines the way the process is to be performed, and vice versa, if we want to do 
something in a specific way, we will be putting a constraint on the nature of the entities 
we will be able to manipulate. Translated into computational terms, this analogy may 
be restated as follows: choice of a mode of representation will condition the choice of 
an algorithm, and vice versa. Let me give now another example, which is closer to the 
situation I want to describe. 
 
This is a story about numbers. It’s a long time humans know about numbers, about their 
properties and applications. In order to be able to use them, humans have had the need 
to represent numbers somehow. As far as I know, nobody has ever seen a number, they 
could be fluffy and pink or bubbly and green, who cares? What is important is that, to 
use them, we need to represent them; as long as the mode of representation we choose 
preserves the relevant properties of numbers that allow us to do such things as addition 
and multiplication, then, no problem. 
 
Greeks and Romans where the first western cultures to discover many of the properties 
and applications of numbers. Greeks, for example, discovered irrational numbers, such 
as π and √2 (irrational numbers are not mad numbers, but just those that cannot be 
expressed as the ratio of two integers, like 1/2). That this is so is quite surprising (and, 
in a way, it says a lot about the skills of Greek and Roman mathematicians and 
engineers), as they both were using a fairly odd way of representing numbers. Let me 
remind you how the Roman system worked. 
 
The system is based on a collection of seven symbols representing selected numbers, 
plus a few rules for combining these symbols in order to construct more complex ones. 
 

BASIC SYMBOLS FOR ROMAN NUMERALS 
Symbol Number represented 

I 1 
V 5 
X 10 
L 50 
C 100 
D 500 
M 1000 

 
As for the principles of combination, you all know how they are approximately 
supposed to work: a) A symbol to the right of another symbol has an additive function; 
b) A symbol to left of another symbol has a subtractive function. With this system of 
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 XXXII times XLVI is the same as: 
 X+X+X+I+I times L+V+I–X. We construct the following auxiliary 
table: 
 
 X times L = D X times I = X 
 X times V = L X times X = C 
 
 X+X+X times L+V+I = D+D+D+L+L+L+X+X+X 
 X+X+X times X = C+C+C 
 
 Thus, 
 XXX times XLVI = D+D+D+L+L+L+X+X+X–C–C–C. 
 
 Next we calculate I+I times L+V+I–X with the auxiliary table below: 
 
 I times L = L  I times I = I 
 I times V = V  I times X = X 
 
 I+I times L+V+I = L+L+V+V+I+I 
 and 
 I+I times X = X+X 
 
 Thus, 
 II times VLVI = L+L+V+V+I+I–X–X 
 
 Now we just have to add the two results: 
 D+D+D+L+L+L+L+L+X+X+X+V+V+I+I–C–C–C–X–X = 
 M+D+C+C–C–C–C+L+X+X+X–X–X+V+V+I+I = MCDLXXII 

representation, performing addition and subtraction is fairly straightforward, since the 
very idea of these operations is directly built in the system of representation. (In fact, 
you can think of Roman complex numerals as a way of writing sums, with implicit 
addition and subtraction signs connecting the symbols.) But what about the algorithms 
for multiplication and division? Well, multiplication is a nightmare; division is just 
impossible. To appreciate this, consider the simple situation of multiplying 32 by 46: 
 
 
Now you know why the Roman numeral system only survives to inscribe dates on 
gravestones or to indicate the copyright year of Hollywood pictures. It’s just useless for 
other practical purposes. If you now think of our current numeral system, the so-called 
Arabic system, you’ll notice that, with the same basic idea of using symbols to 
represent numbers, it uses a different set of principles to combine these symbols to 
build more complex representations. The system is a positional one and recognizes a 
quite useful entity, the number zero. With this system of representation, all four 
operations are easy to perform, just choose your favorite algorithm for doing 
multiplication—there are several of them—and you will be able to check that 32x46 is, 
in fact, 1472. 
 
Back to our topic, we see that there is a morale in this story about numbers, namely 
that, in characterizing a computational task, we must be very careful at the time of 
choosing a format for our input and output representations and at the time of choosing 
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an algorithm to describe the process of computing a representation out of another. It is 
not true that just anything will do, since it is not true that the form of our 
representations has nothing to do with how they will be processed. Thus, when 
choosing an appropriate format for our representations we must be careful not to fall 
into the RNT (short for Roman Numeral Trap), and the only way to avoid that is to 
know what are the underlying formal properties of our representation language. It’s the 
only way to know which algorithm will be more suitable for the task we have defined 
or, indeed, whether there is one at all. Let us then summarize the three basic elements 
of any computational theory: 
 
1.- Definition of a mapping from an input representation into an output 

representation; 
2.- A theory of input and output representations, to be modeled by an appropriate 

representation language; 
3.- A theory of how the mapping is actually performed, taking into account the nature 

of the representations involved. 
 
OK, let’s expand a bit the first point in this list, so that we can later look at the other 
two. Now, to do this we can reformulate point 1 as a question, namely 
 
● WHAT SORT OF MAPPING IS INVOLVED IN AN NLP TASK? 
 
And the answer is... well, it depends. It depends because the NLP problem contains, in 
fact, two subproblems: the Parsing problem and the Generation problem or, to put it 
into psycholinguistic terms, the Comprehension and the Production problems. Thus, 
depending on what direction you are going, the mapping will take some specific type of 
input representation or another and will produce some specific type of output 
representation. 
 
From the point of view of comprehension/parsing, the input may be either an acoustic 
signal or some string of characters, and the output we may assume that is a complete 
structural description out of which a semantic interpretation may be derived. In fact, in 
the case of the acoustic signal, it may be practical to assume that the it is translated to 
some normalized phonetic/phonological representation that acts as the actual input to 
the process: 
 

Signal 
transducer

SIGNAL Rp

 
 
In the case of production/generation, the input must be a semantic representation of 
some sort (a logical form, for example) and the output a complete structural description 
out of which a phonetic interpretation may be derived. The following scheme, adapted 
from Jackendoff (1997), summarizes this: 
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Rp

Rf

Rf

Rs

acoustic-phonetic 
interfac

Semantic-conceptual 
interface

Motor-phonetic 
interface

Conceptual-semantic 
interface

Signal Semantic interpretation

Motor representation
Conceptual-intentional 

representation  
 
This is a very general model, not just a psycholinguistic one; replace the labels with 
others, less biased ones and you’ll get the model for a complete speech 
comprehension/production system. But I want you to focus your attention on the central 
box and on the representations getting in and out of it, since these are the mappings we 
will be mainly concerned with. The point is that we need a theory of how these 
representations look like and how the mapping is actually performed. Here is where 
linguistic theory and the theory of computation get in touch. The former will provide us 
with a grammar in charge of defining the form of a complete representation for a 
grammatical sentence, whereas the theory of computation will provide us with an 
algorithm defining the actual operations and steps that we must follow to produce that 
representation given some specific input information. The tighter point of connection 
will be at the level of the grammar, to be interpreted as a store of knowledge to be used 
by the algorithm during the process of constructing the representation. In the next 
section I deal with this in some detail. 
 
 
3 GRAMMARS AND PARSING 
 
As a starter, and to get a first idea of how things might work, let’s consider a very 
simple mapping, from strings of characters into phrase structure trees. This means that 
our ‘linguistic theory’ will be extremely simple and unable of capturing many 
phenomena of natural languages, as we will be using a simple Context-Free Phrase 
Structure Grammar. The reason for doing this is that with such a simple grammar we 
will be able to exemplify more clearly many things about processing algorithms.6 Later 
on we will consider a more linguistically adequate way of writing grammars that can be 
processed with slight extended versions of the algorithms considered here. 
 
                                                 
6The contents of this section is based on Chapter 6 of Gazdar & Mellish (1989). 
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Consider the following Grammar: 
 
 
Now we have a toy grammar, complete with a small lexicon. With this grammar, and 
provided we find the appropriate algorithm, we will be capable of assigning structures 
to sentences like: 
 
a.- the teachers read the book 
b.- the teachers sneeze 
c.- they see the book on the teachers 
d.- they hear her report on the teachers 
 
Or better still, what our grammar says is that there is a limited set of correct 
representations for a sentence given the words contained in it. In fact, this grammar, 
being rather small, allows just for one representation per sentence. For example, by rule 
1, it says that all sentences are made up by two immediate constituents, a Noun Phrase 
(NP) and a Verb Phrase (VP). NPs and VPs may be of different kinds depending on the 
lexical material they contain: rules 2 to 6 give a number of possible structures for VPs, 
whereas rules 7 and 8 define the possible structures for NPs; rule 9 defines the structure 
of Prepositional Phrases (PP), those constituents that are headed by a preposition. 
Finally rules 10 to 15 provide us with information about the categories of words: we 
have Determiners (Det) like ‘the’, Nouns (N) like ‘book’, Intransitive Verbs (IV) like 
‘sneeze’, Transitive Verbs (TV) like ‘read’ and, finally, Prepositions (P) like ‘on’; 
notice that in the lexicon we also have some word of category NP. Thus, our grammar 
tells us that, for instance, a sentence like ‘the teachers read the book’ must have the 

following representation: 

1.- S ∅ NP VP   6.- VP ∅ TV NP VP 
2.- VP ∅ IV    7.- NP ∅ Det N 
3.- VP ∅ IV PP   8.- NP ∅ Det N PP 
4.- VP ∅ TV NP   9.- PP ∅ P NP 
5.- VP ∅ TV NP PP 
 
10.- Det ∅ {the, her}    13.- IV ∅ {sneeze} 
11.- NP ∅ {her, they, teachers}   14.- TV ∅ {hear, see, 
read} 
12.- N ∅ {teachers, book, report}   15.- P ∅ {on} 

 
S

NP

Det
the

N
teachers

VP

TV
read

NP
Det
the

N
book

 

 
Notice that the grammar, seen independently of the algorithm just tells us how an 
appropriate representation of a sentence looks like. This is usually what linguists do: 
they develop theories of how we can represent the structure of natural language 
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expressions to capture their (sometimes very complex) properties. But seen from the 
perspective of NLP, the grammar does something else, it defines the set of all possible 
goals of the algorithm; in other words, the grammar defines all possible output 
representations in our mapping, although it does it in an extremely concise way, as the 
number of rules in the grammar is usually small, whereas the set it defines may be very 
large, perhaps infinite. This is a very important property of grammars, since they 
provide us with the means of using finite resources in the definition of a possibly 
infinite set of output representations.  
 
Now, we want a procedure that is capable of assigning a structural description to any of 
the sentences above using the information stored in the grammar; in other words, we 
want a procedure that, using the finite resources provided by the grammar, is capable of 
mapping any input string into its appropriate structural description (the output 
representation) This is essentially what a parser does, and it can do it following two 
different strategies: top-down or bottom-up. Parsers of the first type are, in some sense, 
hypothesis driven, that is they start building a structure from the top node and proceed 
down until they reach a terminal node (i.e., one that contains a word). For example, 
let’s parse top down the sentence ‘the teachers read the book’: 
 
STEP 1: The parser starts expanding rule 1 and builds the first piece of structure with 
an S dominating an NP and a VP node. 
 

S
NP VP

 

 
STEP 2: Proceeding left-to-right, the parser has the possibility of expanding the NP 
node into a terminal, but, since the first word in the input is not an NP, it rejects this 
hypothesis and expands rule 7 instead (we assume that rules are ordered and that the 
parser chooses the first appropriate rule): 
 

S
NP

Det N
VP

 

 
STEPS 3-4: Both Det and N may be expanded as terminals and the construction of the 
first NP is completed: 
 

S

NP

Det
the

N
teachers

VP

 

 
STEPS 5-7: The parser will try, in that order, to expand rules 2, 3 and 4. Since neither 
rule 2 nor rule 3 contain a transitive verb, these hypotheses, once tried, will be rejected. 
Here we see the result of expanding rule 4 in STEP 7: 
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S

NP

Det
the

N
teachers

VP
TV NP

 

 
STEP 8: The parser finds the verb. 
 

S

NP

Det
the

N
teachers

VP
TV
read

NP

 

 
STEPS 9-10: The parser builds the second NP and, since there are no more words in the 
input, the process ends: 
 

S

NP

Det
the

N
teachers

VP

TV
read

NP
Det
the

N
book

 

 
As you see this parser follows what is technically known as a left-to-right depth-first 
regime, always expanding the leftmost nodes and going as deep as it can until it finds a 
terminal. Another important point is that it proceeds by try-and-error, making 
hypotheses that it must verify before building a piece of structure, this means that it 
may end up building lots of spurious structures before reaching its goal: the more 
complex the sentence the more hypotheses it may need to verify. As we will see 
presently, there exist techniques for reducing this search space and to speed up the 
process. But before considering these, let us first look at how would a bottom-up parser 
proceed. 
 
Here the parser looks first at the first word in the input string and expands up the 
appropriate node. This is STEP 1: 
 
 

Det
the teachers read the book

 

 
STEP 2: The parser will check whether there is any rule of the form K ∅ Det in order to 
see if it is possible to build some structure out of that Det. Since there isn’t one, it reads 
the next word in the input and assigns it the corresponding category. 
 

Det
the

N
teachers read the book
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STEP 3: Now, it seeks a rule of the form K ∅ Det N, since rule 6 is exactly of this type, 
it applies it: 
 

NP

Det
the

N
teachers read the book

 

 
STEP 4: Here, the parser will look for a rule expanding a single NP. There is none, so it 
reads the next word in the input: 
 

NP

Det
the

N
teachers

TV
read the book

 

 
STEPS 5-7: The parser will try to expand the TV, but there are no rules containing just 
a TV, so it will try to build structure out of the first NP and the TV, since this is not 
possible either, it will read the next word, which is a Det. Here, exactly the same 
process for the building of the first NP will be followed. In the end, the result is this: 
 

NP

Det
the

N
teachers

TV
read

NP
Det
the

N
book

 

 
STEP 8: The parser finds that it can build a VP out of a TV and an NP: 
 

NP

Det
the

N
teachers

VP

TV
read

NP
Det
the

N
book

 

 
STEP 9: The parser builds an S out of the first NP and the VP: 
 

S

NP

Det
the

N
teachers

VP

TV
read

NP
Det
the

N
book

 

 
These toy examples are interesting because they all show a shortcoming of doing things 
in such a crude way. The fact is that there is a lot of redundancy in the work that the 
parser is doing, as the same situation pops up again and again. This is so because the 
parser has no memory of what it has done before, so it may be of some use to provide it 
with some means for recording the constituents (and their structure) that it has found. 
 
A preliminary answer to this problem is to provide the parser with the means of 
constructing a well-formed substring table. These are tables where successfully found 
phrases are recorded. When a phrase of a particular category is then sought at a 
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NP → they TV → read N → bookDet → the

S → NP.VP VP → TV.NP NP → Det NP.

❍ ❍❍ ❍ ❍

particular position in the string, the table is consulted. If there is an entry for the right 
kind of phrase at the right place, then the entries in the table are used as the possible 
analyses, rather than the work having to be done again. Thus, the finished WFST for the 
sentence above, will look more or less like the following: 
 

the theachers read the book
❍❍❍❍❍❍

Det N TV Det N

NP
NP

VP

S

 

 
This is already useful because the parser will not have to build the second NP, since it 
has exactly the same structure as the first. A WFST, however, will not prevent the 
parser from reinvestigating hypotheses that have previously failed. If we want to avoid 
duplicating previous attempts at parsing, we need something else: an explicit 
representation about the different goals and hypotheses that the parser has at any one 
time. To do this, we need to introduce a few modifications to WFSTs, the most 
important of which concerns the labels found in arcs. Instead of labeling arcs with a 
category, we will label them with rules, but with rules annotated in such a way that we 
will have the information whether the hypothesis has been tested or not and to what 
extent. Consider these: 
 
a.- S ∅ ●NP VP 
b.- S ∅ NP ●VP 
c.- S ∅ NP VP● 
 
The dot in the rule is an indication of the extent to which the hypothesis has been 
pursued. In the (a) case, if this object is labeling an arc, we know (or, rather, the parser 
knows) that the hypothesis has been made, but not tested; the (b) case tells us that the 
hypothesis has only been partially confirmed, whereas the (c) case reflects the case 
where a hypothesis has been fully confirmed. Thus, as parsing goes along, a chart 
containing this information is built as a representation of the goals and the hypotheses 
made by the parser. For example, for the sentence ‘they read the book’, at some point 
during processing we may have the following active chart: 
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Now we can see how the chart can save us some time during processing by applying a 
heuristic rule called The Fundamental Rule of Chart Parsing.7 What the Fundamental 
Rule tells us is that if we have an arc (or edge, as they are usually called) labeled A ∅ 
W1 ●B W2 and an edge labeled B ∅ W3● , then we can add a new edge labeled A ∅ 
W1 B●W2. Following this principle, our previous chart automatically becomes the 
following: 
 
There’s a lot more to be said about parsing in general and chart parsing in particular, 
but with this rather impressionistic view, I believe that you can get a fairly good idea of 
how this is supposed to work. Note, by the way, that we have been able to talk about 
parsing and parsers without making a single reference to computers or programming: 
the algorithms and strategies we have reviewed here are completely independent of that 

and may be implemented in any programming language (in some languages more 
efficiently than others) and within any machine. Another advantage is that these 
algorithms are relatively easy to extend to richer systems for representing linguistic 
knowledge, which is what we now turn to.8 
 

                                                 

❍
NP → they TV → read N → bookDet → the

S → NP.VP VP → TV.NP NP → Det NP.

❍ ❍❍ ❍

S → NP VP.

VP → TV NP.

7The idea of chart parsing is usually attributed to Martin Kay, who discusses the issues presented here 
and some more in Kay (1980). 
8For a detailed discussion and practical implementation examples of the kinds of grammars I am about to 
present, the interested reader is referred to Gazdar & Mellish (1989) and to Pereira & Shieber (1987) and 
references therein. 
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4 A BETTER GRAMMAR 
 
The parsing techniques described in the previous section were developed and extended 
during the second half of the 1970s and fostered the hope that Context-Free Phrase 
Structure Grammars (CFGs) of a similar type as our toy grammar above might be 
sufficient to capture all the complexity of natural languages. This was soon seen not to 
be true, at least for CFGs that used atomic symbols in their rules, again like the one we 
used above. In contemporary linguistic theory there was, however, a fairly strong 
tradition of using features as a formal tool for expressing certain properties of linguistic 
objects. Thus, for example, within phonology the standard conception of a phoneme 
was (and is) that of a non-atomic entity whose internal structure is conceptualized as a 
bundle of features with the function of expressing the set of properties that distinguish 
an individual  phoneme from the other phonemes in the inventory of a language. Within 
semantics, lexical decomposition models also have tried to represent the meaning of 
words as the result of combining a bundle of semantic primitives in such a way that 
different combinations would yield different lexical meanings. Even syntax had long 
been using features to represent the internal structure of morphosyntactic categories: 
almost anybody with some knowledge of linguistics is familiarized with the proposal by 
Chomsky (1970) of classifying nouns, verbs, adjectives and prepositions according to 
the [±N, ±V] features. 
 
A shared element of all these approaches is that of using features with a very simple 
structure. In general, a feature is conceived of as an attribute-value pair, where the 
attribute expresses some property (e.g., voiced, animate, N) and the value is an atom, 
usually Boolean, that adds information about the property denoted by the attribute. 
Therefore, we often get features like [+voiced], [–animate] or [+N] and, less frequently, 
features like [person=1st], [number=singular], and so on. Already in the mid 1980s, 
some linguists started to explore the possibility to use recursive (or quasi-recursive) 
features to extend CFGs, that is to say, features whose value may be a complex feature 
bundle instead of just an atom. Thus, we start finding descriptions of linguistic object 
like the following:9 
 

category N

inflection 
person 1st
number sg
gender fem

 

 
This complex feature bundle may roughly be interpreted as follows: “there is a category 
of type N, which possesses the property of INFLECTION, which includes the 
morphosyntactic categories of PERSON, NUMBER and GENDER, and the type of person is 
1st, the type of number is singular and the type of gender is feminine.” 
 
With such a small extension, the expressive power of feature-based systems gets 
enormously enhanced; it is not strange, therefore, that since the mid 1980s a number of 
linguistic frameworks were developed that make a more or less extensive use of this 

                                                 
9The most articulated version of a theory based in extended CFG with the properties described in the text 
is the GPSG of Gazdar et al. (1985). 



 15

notion of complex feature as an alternative to the, at the time, favorite formal device 
among linguists: transformational rules.10 
 
Another shared property of these models is the adoption of feature structures as the 
mathematical entities used to model linguistic objects. Feature structures are graphs, 
whose geometry represents the relation existing between an attribute and its value. 
Thus, we can model the feature bundle above with the following feature structure: 

 

category
inflection

person

number
gender

N1ªsingfem

X1

 
 
As the reader will notice, the attribute-value relation is expressed, in a feature structure, 
as a pair <arc, node> such that the label associated to the arc is the name of the attribute 
and the label associated to the node is the name of the value. In this simplified version, 
only nodes representing an atomic value bear a label; nodes with complex values are 
distinguished by the feature substructure stemming from them, which is, in turn, 
potentially complex. 
 
A typical property of feature structures is that there is always a path from the root node 
(the one marked with an X above) leading to some node with an atomic value. This 
means that, by transitivity of the attribute-value relation, we may refer to atomic values 
as values of paths: 
 
 a. X1|category = N. 
 b. X1|inflection|person = 1ª. 
 c. X1|inflection|number = sing. 
 d. X1|inflection|gender = fem. 
 

                                                 
10All the following linguistic frameworks make extensive use of complex features and eschew 
transformational rules completely: Lexical Functional Grammar (LFG; see, especially, Kaplan & 
Bresnan 1982), Generalized Phrase Structure Grammar (GPSG; Gazdar et al. 1985), Head-Driven Phrase 
Structure Grammar (HPSG; Pollard & Sag 1987 and Pollard & Sag 1994), and a number of varieties of 
categorial grammar (e.g., Zeevat et al. 1987 and Uszkoreit 1986). 
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In the example I follow the standard convention of labeling the root node with an X and 
a subindex and the also standard convention of using a vertical bar to separate attribute 
names in a path. 
 
Another fundamental property of feature structures is that they have the power to 
represent structure sharing relations. Geometrically speaking, two paths share structure 
when both converge in the same node and, hence, share exactly the same value. For 
example, assume that you want to express the agreement relation holding between a 
subject and a verb. Structure sharing allows us to express this directly in the feature 
structure that represents the verb: 

 
category

subject
inflection

inflection category

person

number

gender

V

N

1
sing

fem

X2

 
 
Abstracting away from the descriptive adequacy of this representation (in English, 
verbs do not agree in gender with their subjects), we can see how the feature structure 
above has structure sharing: the paths X2|inflection and X2|subject|inflection converge 
at the same node and from this node stems a substructure representing the inflectional 
properties shared by noun and verb. It is important to insist on this particular point: we 
cannot just say that both paths have the same value, or that it is equal or of the same 
kind; their value is exactly, physically, the same object. According to this, the following 
representation, without structure sharing, is different from the previous one: 
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X3

category

category

subject
V

N

inflection

inflectionpers

pers

num

num

gen

gen
1

1

sing

sing

fem

fem

 
 
They are different because in the second case the values of the paths X3|inflection and 
X3|subject|inflection are different objects; they may be objects of the same type, but not 
the same object. This means that, in the world of feature structures, the notion of 
identity may apply to two different situations, traditionally known as token identity and 
type (or sort) identity, where the first implies the second but not conversely. 
 
The importance of capturing the difference between token and type identity forces us to 
make explicit an idea that so far was only implicit in the system I’ve been describing: 
feature structures are organized in types in such a way that every type of feature 
structure is distinguished from the other types by the fact that it possesses a number of 
appropriate attributes for that type and not others, and by the fact that it requires that the 
values of these appropriate attributes belong to specific types. For example, we could 
say that the attribute INFLECTION takes values of type inflection and that this type has 
as its appropriate attributes PERSON, NUMBER and GENDER, which, in turn, take values 
of type person, number and gender, respectively.11  Of course, types may have 
subtypes, such that an attribute taking values of type number, may select among several 
available subtypes of number like, for example, singular, plural or dual. Notice, then, 
that the value of an attribute is always a type, regardless of the fact whether it has 
appropriate attributes or not; those types with no appropriate attributes correspond to 
what so far we were calling atoms. 
 
As the reader may have noticed, the notion of type is a formal constraint we impose 
over feature structures. There is nothing in the mathematical definition of feature 
structure requiring such a constraint. Our motivations are mostly formal—we need to 
capture the difference between token and type identity, but also linguistic, since we 
want to avoid situations in which the CATEGORY attribute, for example, takes the type 
singular as its value. In fact, from the linguistic point of view, we want to impose 
constraints over what is a possible linguistic object, and the formal notion of type 
appears to be quite useful for that. In the following and final section of this paper we 
take over all these notions in order to provide a novel view of how to conceive of 
natural language grammars. 
 

                                                 
11To avoid confusion I will adopt the convention of writing attribute-names in small caps and type-
names in italics. 
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5 UNIFICATION-BASED GRAMMARS 
 
I concluded the preceding section introducing the notion of a type of feature structure 
and pointing to the formal and linguistic reasons that motivate its adoption. Let’s 
explore some interesting consequences of this move. 
 
First, it is obvious that the notion of type has implicit the idea of an ontology, that is, 
and staying within the world of linguistics, that there exists a number of entities with 
well-defined properties, that are part of the structure of language. All linguistic theories 
have more or less explicit ontologies and when linguists talk about ‘nouns’, ‘verbs’, 
‘empty categories’, ‘morphemes’ or ‘passive constructions’ they are usually referring to 
types in an ontology. The idea of an ontology is, therefore, not alien to linguistic theory 
and, sometimes, some differences between competing theories may be traced to 
differences in the ontologies assumed. 
 
Pollard & Sag (1987) already saw the importance of building an ontology of linguistic 
objects (or, to use their term, a sort system) and the need that the phrase ‘linguistic 
object’ does not refer only to a full representation but also to substructures within this 
representation. Thus, for example, we may say that all representations are objects 
within the class of signs because we assume that all representations have something in 
common, i.e., belong to the same type or are of the same sort. Assume, with Pollard and 
Sag, that all objects of sort sign share the property of having phonological, syntactic 
and semantic information. Now, any proper part of a sign may itself be conceived of as 
a linguistic object of some sort, such that we may talk about an intonational phrase 
(phonological object), a noun phrase (syntactic object) or a generalized quantifier 
(semantic object) without talking, necessarily, about a different sign. Seen from this 
perspective, the world of linguistic objects is much, much larger, since it goes well 
beyond full representations of sentences or constructions, which, in this view, are 
nothing but a special class of linguistic objects. As we will see presently, a grammar 
may be defined as a collection of declarations about how these objects can be combined 
and what their internal structure can be. 
 
Getting deeper into the notion of an ontology and the associated notions of sort and 
subsort we can obtain a better understanding of the consequences that a formally 
precise definition of the sort system has for the theory.12  Firstly, it is important to note 
that any sort system is hierarchically organized as a multiple inheritance network, in 
such a way that there always is a unique maximal or more general sort of which the 
other sorts are a subsort. Given the relation that holds among the sorts in the system, 
every sort inherits some property from its supersort. Consider the following sort system, 
inspired in that of Pollard & Sag (1994): 
 

entities

signs

words phrases

 

 

                                                 
12In this paper, I will use interchangeably the terms ‘ontology’ and ‘sort system’, as well as ‘type’ and 
‘sort’, although it is not entirely obvious that the latter mean exactly the same thing. The content of what 
follows is partly based on the works of Carpenter (1992) and King (1994). 
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As you can see, this ontology has a maximal sort, that of entities, which, in turn, has a 
number of subsorts. I focus here on the subsort of signs, which is partitioned into two 
more subsorts: words and phrases. Following Pollard and Sag, we can define a sign as a 
linguistic object with phonological, syntactic and semantic information. These 
properties will be inherited by all subsorts of sign and, possibly, some specific ones will 
be added for every subsort. In other words, a word IS A sign and a phrase IS A sign. 
Sorts and subsorts are connected by the basic ISA relation, which is transitive, such that 
if a word IS A sign and a sign IS AN entity, a word IS AN entity. 
 
Thus defined, an ontology is a very powerful tool for constraining the form of the 
different entities that may be part of the sort system, since it rigidly defines a finite set 
of sorts with a fixed internal structure. 
Given this, it becomes very important to draw a clear distinction between a sort, 
understood as a partial description of a linguistic object, and the object itself, since 
descriptions are always partial, whereas linguistic objects (representations) are always 
complete. In other words, the sort system defines a set of completely specified 
representations. I presume that the reader has already established the connection 
between the sort system and a grammar in the traditional sense, and between the 
collections of objects defined by the sort system and the infinite set of representations 
defined by a grammar (remember: the goals of the processing algorithm). Nothing new 
here apart from the fact that we have sensibly enriched the structure and the 
organization of the grammar. In fact, we are also in a position to clarify the relation that 
exists between the declarations in the grammar and the objects in the set of 
representations: between a grammar, expressed in some formal language, and the 
collection of representations it defines exists a semantic relation. That is, every 
declaration in the grammar describes (i.e., denotes) a set of representations that is a 
proper subset of the whole set of representations; the more specific is a declaration, the 
smaller will be its denotation, and conversely.13  
 
Thus, any of the following declarations, even if partial, is a possible description. Notice, 
moreover, that the intersection of each of the respective denotation sets is not empty: 
 
 a. 

sign
CAT verb

FLEX [1] 
infl
NUM sing
PERS 3a

ARGS 

args

SUB
sign
CAT noun
INFL  1
CASE nom

OBJ 
sign
CAT noun
CASE acc

 

 

                                                 
13Thus, the set of representations is roughly equivalent to a Herbrand Universe; see Pereira & Shieber 
1987: 88. 
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 b. 
sign
CAT verb

ARGS 

args

SUB 
sign
CAT noun
INFL  infl
CASE nom

OBJ 
sign
CAT noun
CASE acc

 

 
 c. 

sign
CAT verb

INFL [1] 
infl
NUM sing
PERS 3a

ARGS 
args

SUB 
sign
CAT noun
FLEX 1
CASE nom

 

 
 d. 

sign
CAT verb

INFL 
flex
NUM sing
PERS 3a

 

 
The descriptions above give us the opportunity to appreciate some of the properties of 
the user language that is standard in most unification-based formalisms. First, I keep the 
convention of using small caps for attribute names and italics for sort names; square 
brackets are used to indicate the different levels of structure. As may be seen, atomic 
sorts are written directly as attribute values. When a value is complex, its sort is written 
at the top-left corner of the bracket. Indexes, expressed as digits enclosed in brackets, 
indicate structure sharing. Thus, for example, in (a) the INFL attribute of the verb and 
the INFL attribute of the subject have a token identical value. Let us turn now to some 
relations that exist among the different descriptions. 
 
Given two partial descriptions A and B, if the intersection of their respective denotation 
sets is not empty, we can say that some relation exists between them, since the 
information that each description contains is not incompatible with the information in 
the other. When this happens, we may state that there is a third description C, more 
specific that any of the previous ones, that contains exactly the same information as A 
and B. We say that C is the unification of A and B. For example, (g) below is the 
unification of (e) and (f): 
 
 e. 

CAT noun
INFL NUM sing
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SUBSUMPTION 
 i. Reflexive  ∀A, A ≤ A.
 ii. Transitive if A ≤ Band B ≤ C, A ≤ C.  
 iii. Antisymmetric if A ≤ Band B ≤ A, A = B.  
 
UNIFICATION 
 i. Idempotent  A ∧ A = A.
 ii. Commutative A ∧ B = B ∧ A.  
 iii. Associative A ∧ B( )∧ C = A ∧ B ∧ C( ).  
 iv. Identity A ∧ T = A.  
 v. Zero A ∧ ⊥ = ⊥.  

 
 f. 

CAT noun
INFL PERS 3a

GEN masc  

 
 g. 

CAT noun

INFL 
NUM sing
PERS 3a
GEN masc  

 
Notice that unification is an operation that closely resembles set union, with the 
peculiarity of being sensitive to the compatibility of the information contained within 
the descriptions. Thus, if the value of he cat attribute in (e) was verb instead of noun, its 
unification with (f) would not be defined.14  Given this property, it is obvious that the 
unification of two descriptions is a new description containing at least as much 
information as the former, that is, (g) subsumes (e) and (f). Formally: 
 
 i. A ∧ B = C  
 ii. C ≤ A  
 iii. C ≤ B  
 
If we assume that the set of all valid descriptions for some set of representations 
includes a minimal description, the less specific of all, subsumed by every other 
description (symbolized T), and a maximal description that subsumes all others 
(symbolized by ⊥), we can define the following properties of subsumption and 
unification: 
 
 
We are reaching the end of the paper, so let’s summarize some important points I’ve 
tried to make and draw some conclusions. In the two final sections of the paper, I 
developed a conception of grammar in terms of a theory of representations. According 
to this idea, a grammar is a (hopefully finite) collection of declarations defining the 
(presumably infinite) set of possible representations. We’ve also seen that, formally, we 

                                                 
14This is not completely true, as, for purely formal reasons, sometimes it is convenient to assume that the 
unification of two incompatible descriptions is defined, yielding a special result. 
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can conceive of these representations as a special kind of graphs we called feature 
structures over which we can impose a number of formal and substantive constraints 
(e.g., that they are sorted, that sorts have appropriate attributes, and so on.). From this 
perspective, the representations in the set defined by the grammar must be understood 
as complete objects, standing in a semantic relation with the declarations of the 
grammar (i.e., a representation is always in the denotation set of some grammar 
declaration), whereas declarations are always partial descriptions of representations (of 
course, they may be more o less specific, but they are always partial). Moreover, the 
fact that declarations are partial has another interesting consequence: to the extent that 
two descriptions are informationally compatible, we can define an operation of 
unification to combine them into a larger, more specific description; this new 
description is said to subsume the other two, as it contains as much compatible 
information as any of them. 
 
This very general idea of a grammar as described here is at the core of most feature and 
unification-based linguistic frameworks like HPSG (Pollard & Sag 1994, Sag & Wasow 
1999) and it puts quite a lot of effort on one of the crucial prerequisites that, as I 
insisted in section 2, a linguistic theory must satisfy: developing a precise and well 
defined conception of the nature and form of representations. Recall that this is a very 
important point at the time of considering a problem from a computational perspective, 
as the form of representations may have critical consequences at the time of considering 
the problem of NLP. 
 
As we saw in section 3, there exist powerful and efficient techniques for processing 
simple CFGs, but, as I noted, the theory of CFGs does not qualify as an adequate 
linguistic theory, since it is unable to capture some important facts about natural 
languages. This reason alone led me to propose a different way of looking at grammars 
and linguistic objects. In presenting this conception, I didn’t go into the details of 
linguistic analysis, as this was not my main goal here—although a quick look to any of 
the references about HPSG, for example, will reveal that there’s been considerable 
progress in this area, but rather to show how one may do a good work in linguistic 
theorizing without neglecting formalization; in fact, if my arguments in section 2 are 
true, one cannot neglect formalization. The point now is, if unification-based models 
provide an adequate framework for developing a theory of representations that is both 
linguistically and formally sound, how do they behave when considering processing 
issues? Recall that there is a trade-off between the theory of representations and the 
theory of processes, so this is legitimate question to ask. At the end of section 3, I 
pointed out that parsing algorithms for CFGs may be easily extended to process 
grammars which make an extensive use of features and unification (as unification is a 
‘natural’ operation is some programming languages like Prolog, for example), but this 
is true as long as these grammars contain what we may call a ‘context-free backbone’, 
i.e., that features in representations are arranged along a typical phrase structure tree; 
this is, for example, the technique used in the PATR II formalism (Shieber et al. 1983; 
Gazdar & Mellish 1989, Ch. 7) where representations are standard phrase-structure 
trees with feature structures in their nodes instead of atomic symbols. The point is that 
we may not want to do that. As some recent research in unification-based phonology 
suggests (Aguilar, Balari & Marín 1998a,b), it may well be the case that we need more 
complex representations for which the classical ‘context-free backbone’ approach may 
be insufficient. In this case, a solution to this problem may be that processing reduces to 
a task of building a complex representation through the successive application of 
operations of unification (along the lines of what King (1994), in a different context, 
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termed an ‘elaboration’), a possibility that I’ve explored with some more detail in 
Balari (1999). Whatever the outcome of these speculations might be, however, I believe 
nothing of that sort could have been done without taking the computational perspective. 
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